A CEQA LEVEL OF PRELIMINARY DRAINAGE REPORT FOR:

LILAC HILLS RANCH IMPLEMENTING TM TM 5572 RPL-3

San Diego County, California

PREPARED FOR:

Accretive Capital Partners, LLC 3655 Nobel Drive, Suite 650 San Diego, Ca 92122

PREPARED BY:

Landmark Consulting 9555 Genesee Ave. Ste. 200 San Diego, Ca 92121 858-587-8070 Rev. date: 5-3-13

TABLE OF CONTENTS

	PAGE
DISCUSSION	5-13
PURPOSE OF PROJECT VICINITY MAP DESCRIPTION OF WATERSHED METHODOLOGY SUMMARY	5 5 7 9-14 15
DECLARATION OF RESPONSIBLE CHARGE	17
100-YEAR HYDROLOGY CALCULATIONS	19-130
PRE-DEVELOPMENT CONDITIONS POST-DEVELOPMENT CONDITIONS	19-38 39-130
100-YEAR HYDROGRAPH CALCULATIONS	131-158
PRE-DEVELOPMENT CONDITIONS POST-DEVELOPMENT CONDITIONS	131-144 145-158
APPENDIX	159
HYDROLOGIC SOILS GROUP MAP RUNOFF COEFFICIENT 100-YEAR, 6-HOUR PRECIPITATION RUNOFF CURVE NUMBERS	
HYDROLOGY MAPS	161
ADDENDUM FOR PERMEABLE PAVERS	163-165

DISCUSSION

PURPOSE FOR PROJECT

The purpose of this project is to subdivide 115 acres of rural land into a master-planned community with residential, parks and extensive open spaces. The project site situated on the northeasterly upstream of a much larger watershed that drains southwesterly into San Luis Rey River.

DESCRIPTION OF WATERSHED

The project is located on the east side of Interstate 15, southerly of W. Lilac Road in the County of San Diego, State of California.

This project is the first implementing portion of a 1746 lot master-planned community – Lilac Hills Ranch. The project proposes the construction of 350 dwelling units with paved roadways and parks and a sewer treatment plant on the northerly tip of the future master-planned community. The implementing TM consists of 114.9 Acres within the project boundary and approximately 11.0 acres outside of the project boundary that includes approximately the additional grading for the construction of the access road, sewer treatment plant and a detention basin. The total project disturbance footprint is approximately 125.9 acres. For purposes of comparison, only the areas with the disturbance footprint is modeled and analyzed.

The project site is situated within the northerly sub drainage basin – one of three sub basins that flows through the overall master-planned project boundary. The northerly sub drainage basin is approximately 395 acres. Under the pre-development conditions, the runoff from this sub-basin flows into a series of natural channels in a general northeasterly to southwesterly direction. These natural channels confluence into a major natural channel approximately 1300' southerly of the southerly project tip. This confluence point is designated as the project final discharge point.

The overall grading design of the project will follow the existing landform to minimize both on-site and off-site runoff diversion. Under the proposed conditions, the northerly portion of the site, adjacent to the existing W. Lilac Road, drains into a proposed underground storm drainage system that conveys the runoff westerly along the proposed Street Z then southerly along the proposed extension of W. Lilac Road to a proposed detention basin located just southerly of the project boundary. The southerly tip of the westerly half of the project drains to a low point located in the proposed street, then the runoff is conveyed onto the easterly natural terrain via a proposed storm drain, the runoff then flows southerly in the natural channel then confluences with the mitigated runoff from the detention basin before leaving the project southerly boundary at the final discharge point.

The purpose of this report is to determine the peak runoff rates under the post-development conditions and to size the preliminary stormdrain pipes. The runoff volume will also be analyzed to size the detention basin to mitigate the anticipated increase in discharge volume.

METHODOLOGY

3.1 THE RATIONAL METHOD

The Rational Method (RM) is a mathematical formula used to determine the maximum runoff rate from a given rainfall. It has particular application in urban storm drainage, where it is used to estimate peak runoff rates from small urban and rural watersheds for the design of storm drains and small drainage structures. The RM is recommended for analyzing the runoff response from drainage areas up to approximately 1 square mile in size. It should not be used in instances where there is a junction of independent drainage systems or for drainage areas greater than approximately 1 square mile in size. In these instances, the Modified Rational Method (MRM) should be used for junctions of independent drainage systems in watersheds up to approximately 1 square mile in size (see Section 3.4); or the NRCS Hydrologic Method should be used for watersheds greater than approximately 1 square mile in size (see Section 3.4).

The RM can be applied using any design storm frequency (e.g., 100-year, 50-year, 10-year, etc.). The local agency determines the design storm frequency that must be used based on the type of project and specific local requirements. A discussion of design storm frequency is provided in Section 2.3 of this manual. A procedure has been developed that converts the 6-hour and 24-hour precipitation isopluvial map data to an Intensity-Duration curve that can be used for the rainfall intensity in the RM formula as shown in Figure 3-1. The RM is applicable to a 6-hour storm duration because the procedure uses Intensity-Duration Design Charts that are based on a 6-hour storm duration.

3.1.1 Rational Method Formula

The RM formula estimates the peak rate of runoff at any location in a watershed as a function of the drainage area (A), runoff coefficient (C), and rainfall intensity (I) for a duration equal to the time of concentration (T_c), which is the time required for water to

flow from the most remote point of the basin to the location being analyzed. The RM formula is expressed as follows:

$$Q = CIA$$

Where: Q = peak discharge, in cubic feet per second (cfs)

 C = runoff coefficient, proportion of the rainfall that runs off the surface (no units)

I = average rainfall intensity for a duration equal to the T_c for the area, in inches per hour (Note: If the computed T_c is less than 5 minutes, use 5 minutes for computing the peak discharge, Q)

A = drainage area contributing to the design location, in acres

Combining the units for the expression CIA yields:

$$\left(\frac{1 \operatorname{acre} \times \operatorname{inch}}{\operatorname{hour}}\right) \left(\frac{43,560 \operatorname{ft}^2}{\operatorname{acre}}\right) \left(\frac{1 \operatorname{foot}}{12 \operatorname{inches}}\right) \left(\frac{1 \operatorname{hour}}{3,600 \operatorname{seconds}}\right) \Rightarrow 1.008 \operatorname{cfs}$$

For practical purposes the unit conversion coefficient difference of 0.8% can be ignored.

The RM formula is based on the assumption that for constant rainfall intensity, the peak discharge rate at a point will occur when the raindrop that falls at the most upstream point in the tributary drainage basin arrives at the point of interest.

Unlike the MRM (discussed in Section 3.4) or the NRCS hydrologic method (discussed in Section 4), the RM does not create hydrographs and therefore does not add separate subarea hydrographs at collection points. Instead, the RM develops peak discharges in the main line by increasing the T_c as flow travels downstream.

Characteristics of, or assumptions inherent to, the RM are listed below:

 The discharge flow rate resulting from any I is maximum when the I lasts as long as or longer than the T_c.

- . The storm frequency of peak discharges is the same as that of I for the given Te.
- The fraction of rainfall that becomes runoff (or the runoff coefficient, C) is independent
 of I or precipitation zone number (PZN) condition (PZN Condition is discussed in
 Section 4.1.2.4).
- The peak rate of runoff is the only information produced by using the RM.

3.1.2 Runoff Coefficient

Table 3-1 lists the estimated runoff coefficients for urban areas. The concepts related to the runoff coefficient were evaluated in a report entitled *Evaluation, Rational Method "C" Values* (Hill, 2002) that was reviewed by the Hydrology Manual Committee. The Report is available at San Diego County Department of Public Works, Flood Control Section and on the San Diego County Department of Public Works web page.

The runoff coefficients are based on land use and soil type. Soil type can be determined from the soil type map provided in Appendix A. An appropriate runoff coefficient (C) for each type of land use in the subarea should be selected from this table and multiplied by the percentage of the total area (A) included in that class. The sum of the products for all land uses is the weighted runoff coefficient ($\Sigma[CA]$). Good engineering judgment should be used when applying the values presented in Table 3-1, as adjustments to these values may be appropriate based on site-specific characteristics. In any event, the impervious percentage (% Impervious) as given in the table, for any area, shall govern the selected value for C. The runoff coefficient can also be calculated for an area based on soil type and impervious percentage using the following formula:

 $C = 0.90 \times (\% \text{ Impervious}) + C_p \times (1 - \% \text{ Impervious})$

Where: C_p = Pervious Coefficient Runoff Value for the soil type (shown in Table 3-1 as Undisturbed Natural Terrain/Permanent Open Space, 0% Impervious). Soil type can be determined from the soil type map provided in Appendix A.

The values in Table 3-1 are typical for most urban areas. However, if the basin contains rural or agricultural land use, parks, golf courses, or other types of nonurban land use that are expected to be permanent, the appropriate value should be selected based upon the soil and cover and approved by the local agency.

3.1.4 Time of Concentration

The Time of Concentration (T_c) is the time required for runoff to flow from the most remote part of the drainage area to the point of interest. The T_c is composed of two components: initial time of concentration (T_i) and travel time (T_t). Methods of computation for T_i and T_t are discussed below. The T_i is the time required for runoff to travel across the surface of the most remote subarea in the study, or "initial subarea." Guidelines for designating the initial subarea are provided within the discussion of computation of T_i . The T_t is the time required for the runoff to flow in a watercourse (e.g., swale, channel, gutter, pipe) or series of watercourses from the initial subarea to the point of interest. For the RM, the T_c at any point within the drainage area is given by:

$$T_c = T_i + T_t$$

Methods of calculation differ for natural watersheds (nonurbanized) and for urban drainage systems. When analyzing storm drain systems, the designer must consider the possibility that an existing natural watershed may become urbanized during the useful life of the storm drain system. Future land uses must be used for T_c and runoff calculations, and can be determined from the local Community General Plan.

3.1.4.1 Initial Time of Concentration

The initial time of concentration is typically based on sheet flow at the upstream end of a drainage basin. The Overland Time of Flow (Figure 3-3) is approximated by an equation developed by the Federal Aviation Agency (FAA) for analyzing flow on runaways (FAA, 1970). The usual runway configuration consists of a crown, like most freeways, with sloping pavement that directs flow to either side of the runway. This type of flow is uniform in the direction perpendicular to the velocity and is very shallow. Since these depths are ¼ of an inch (more or less) in magnitude, the relative roughness is high. Some higher relative roughness values for overland flow are presented in Table 3.5 of the HEC-1 Flood Hydrograph Package User's Manual (USACE, 1990).

SUMMARY

PEAK DISCHARGE RATE

DIS- CHARGE	PRE-DEVELOPMENT CONDITIONS			DIS-CHARGE POINT POST-DEVELOPMENT CONDITIONS			ONS	PROPOSED MITIGATION						
POINT	С	Tc	I	A	V	Q		С	Tc	I	A	V	Q	MITIONION
		(Min)	(in)	(Ac)	(fps)	(cfs)			(Min)	(in)	(Ac)	(fps)	(cfs)	
Node 118	0.30	27.8	3.04	395.5	7.3	384.7	Node 1132	0.30	19.5	4.5	391	7.5*	482.9*	Runoff is
														directed into a
														proposed
														detention with a
														restricted outlet
														structure such
														that the
														discharge from
														the detention
														basin is at or
														less than that of
														the pre-
														development
														conditions.

^{*}unmitigated velocity and runoff rate

RUNOFF VOLUME

	BASIN 100
PRE-DEV (Ac-Ft)	141.1
POST-DEV(Ac-Ft)	150.5
DETENTION VOL(Ac-Ft)	9.4
DESIGN VOL (Ac-Ft)	12.5

The proposed detention pond for each sub-basin is adequately size to store all the excessive runoff volume. Their outlet structures will restrict the peak runoff rate exiting these ponds at or below that of under the pre-development conditions. Based on the minimum volume requirement —a detention pond in the volume of 12.5 Ac-Ft is proposed for the development. The proposed detention basin has adequate storage volume to hold the entire excess runoff from the proposed development, the outlet structure will be designed to release no more than 78 cfs to from the detention basin such that the total peak discharge from the entire project site at the final discharge point is less than that of the predevelopment conditions. The proposed development will not adversely affect the downstream drainage facilities.

DECLARATION OF RESPONSIBLE CHARGE

I hereby declare that I am the civil Engineer of Work for this project, that I have exercised responsible charge over the design of this project as defined in Section 6703 of the Business and Professions code, and that the design is consistent with current design.

I understand that the check of project drawings and specifications by the County of San Diego is confined to a review only and does not relieve me, as Engineer of Work, of my responsibilities for project design.

David Yeh, RCE 62717, EXP 6-30-14

100-YEAR HYDROLOGY CALCULATIONS

PRE-DEVELOPMENT CONDITIONS

******************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2004 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 01/01/2004 License ID 1503 Analysis prepared by: LANDMARK CONSULTING 9555 GENESEE AVE. SUITE 200 SAN DIEGO, CA 92121 TEL: 858-587-8070, FAX: 858-587-8750 ******************** DESCRIPTION OF STUDY ****************** * LILAC HILLS RANCH * IMPLEMENTATION TM * PRE-DEVELOPMENT, 100-YEAR STORM ************************* FILE NAME: 1037EX.DAT TIME/DATE OF STUDY: 09:50 02/17/2012 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n) NO. 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*

```
FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1042.00
 DOWNSTREAM ELEVATION(FEET) = 1038.00
 ELEVATION DIFFERENCE(FEET) = 4.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                             5.482
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.690
 SUBAREA RUNOFF(CFS) = 0.31
                 0.10 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*************************
 FLOW PROCESS FROM NODE
                  102.00 TO NODE 103.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1038.00 DOWNSTREAM(FEET) = 826.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2700.00 CHANNEL SLOPE = 0.0785
 CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.488
 LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.60
 AVERAGE FLOW DEPTH(FEET) = 0.58 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 15.27
 SUBAREA AREA(ACRES) = 57.80
                          SUBAREA RUNOFF(CFS) = 77.82
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 57.90
                           PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.83 FLOW VELOCITY(FEET/SEC.) = 5.66
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 2760.00 FEET.
FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 15.27
 RAINFALL INTENSITY(INCH/HR) = 4.49
 TOTAL STREAM AREA(ACRES) = 57.90
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 77.98
******************
 FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
```

```
RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                               60.00
 UPSTREAM ELEVATION(FEET) = 928.00
 DOWNSTREAM ELEVATION(FEET) = 927.00
ELEVATION DIFFERENCE(FEET) = 1.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                 8.702
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.450
 SUBAREA RUNOFF(CFS) = 0.23
 TOTAL AREA(ACRES) =
                    0.10 TOTAL RUNOFF(CFS) = 0.23
************************
 FLOW PROCESS FROM NODE
                      105.00 TO NODE
                                     103.00 \text{ IS CODE} = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 927.00 DOWNSTREAM(FEET) = 826.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1200.00 CHANNEL SLOPE = 0.0842
 CHANNEL BASE(FEET) = 14.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.502
 LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.84
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.08
 AVERAGE FLOW DEPTH(FEET) = 0.31 TRAVEL TIME(MIN.) = 6.50
 Tc(MIN.) = 15.20
                             SUBAREA RUNOFF(CFS) = 27.96
 SUBAREA AREA(ACRES) = 20.70
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 20.80
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.45 FLOW VELOCITY(FEET/SEC.) = 3.87
 LONGEST FLOWPATH FROM NODE 104.00 TO NODE 103.00 = 1260.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                     103.00 TO NODE
                                    103.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 15.20
 RAINFALL INTENSITY(INCH/HR) = 4.50
 TOTAL STREAM AREA(ACRES) = 20.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 28.12
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  TC INTENSITY
                 (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
    1
          77.98 15.27 4.488
                                       57.90
          28.12 15.20
                            4.502
                                        20.80
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
        105.74 15.20 4.502
    1
         106.02
                15.27
                         4.488
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 106.02 Tc(MIN.) = 15.27
 TOTAL AREA(ACRES) = 78.70
 LONGEST FLOWPATH FROM NODE
                       101.00 TO NODE 103.00 = 2760.00 FEET.
*************************
                   103.00 TO NODE
                                 106.00 IS CODE = 51
 FLOW PROCESS FROM NODE
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 826.00 DOWNSTREAM(FEET) = 794.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 780.00 CHANNEL SLOPE = 0.0410
 CHANNEL BASE(FEET) = 24.00 "Z" FACTOR = 2.500
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.017
 LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 113.67
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.54
 AVERAGE FLOW DEPTH(FEET) = 0.95 TRAVEL TIME(MIN.) = 2.86
 Tc(MIN.) = 18.13
 SUBAREA AREA(ACRES) = 12.70
                            SUBAREA RUNOFF(CFS) = 15.31
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 91.40
                             PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.93 FLOW VELOCITY(FEET/SEC.) = 4.48
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 3540.00 FEET.
*******************
 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 18.13
 RAINFALL INTENSITY(INCH/HR) = 4.02
 TOTAL STREAM AREA(ACRES) = 91.40
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                             110.20
*******************
 FLOW PROCESS FROM NODE 107.00 TO NODE
                                 108.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                              60.00
 UPSTREAM ELEVATION(FEET) = 958.00
 DOWNSTREAM ELEVATION(FEET) =
                        956.00
```

```
ELEVATION DIFFERENCE(FEET) =
                             2.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.467
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.120
 SUBAREA RUNOFF(CFS) = 0.21
 TOTAL AREA(ACRES) =
                    0.10 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE
                     108.00 TO NODE 106.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 956.00 DOWNSTREAM(FEET) = 794.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1030.00 CHANNEL SLOPE = 0.1573
 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.370
 LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                            8.18
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.19
 AVERAGE FLOW DEPTH(FEET) = 0.30 TRAVEL TIME(MIN.) = 4.09
 Tc(MIN.) = 11.56
 SUBAREA AREA(ACRES) = 9.70
                              SUBAREA RUNOFF(CFS) = 15.63
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 9.80
                           PEAK FLOW RATE(CFS) = 15.79
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.45 FLOW VELOCITY(FEET/SEC.) = 5.29
 LONGEST FLOWPATH FROM NODE
                         107.00 TO NODE 106.00 = 1090.00 FEET.
*******************
 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.56
 RAINFALL INTENSITY(INCH/HR) = 5.37
 TOTAL STREAM AREA(ACRES) = 9.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 110.20 18.13 4.017
                                      AREA
                                     (ACRE)
                                       91.40
          15.79 11.56
                            5.370
                                         9.80
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                         INTENSITY
 NUMBER
         (CFS)
                 (MIN.) (INCH/HOUR)
          98.23 11.56 5.370
    1
    2
         122.01
                 18.13
                           4.017
```

```
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 122.01 Tc(MIN.) = 18.13
 TOTAL AREA(ACRES) = 101.20
 LONGEST FLOWPATH FROM NODE
                      101.00 TO NODE 106.00 = 3540.00 FEET.
******************
 FLOW PROCESS FROM NODE 106.00 TO NODE 109.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 794.00 DOWNSTREAM(FEET) = 786.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 144.00 CHANNEL SLOPE = 0.0556
 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.968
 TURF FAIR COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 77
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 122.43
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.90
 AVERAGE FLOW DEPTH(FEET) = 1.98 TRAVEL TIME(MIN.) = 0.35
 Tc(MIN.) = 18.48
 SUBAREA AREA(ACRES) = 0.70
                          SUBAREA RUNOFF(CFS) = 0.83
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 101.90
                          PEAK FLOW RATE(CFS) = 122.01
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.98 FLOW VELOCITY(FEET/SEC.) = 6.88
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 109.00 = 3684.00 FEET.
**************************
 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
******************
 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 989.00
 DOWNSTREAM ELEVATION(FEET) = 988.00
 ELEVATION DIFFERENCE (FEET) = 1.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.082
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.765
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.20
*******************
 FLOW PROCESS FROM NODE
                   111.00 TO NODE 112.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 988.00 DOWNSTREAM(FEET) = 842.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1340.00 CHANNEL SLOPE = 0.1090
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.183
 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 17.32
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.40
 AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) = 4.13
 Tc(MIN.) = 12.21
 SUBAREA AREA(ACRES) = 18.20 SUBAREA RUNOFF(CFS) = 33.96
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.360
 TOTAL AREA(ACRES) = 18.30
                          PEAK FLOW RATE(CFS) = 34.12
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.29 FLOW VELOCITY(FEET/SEC.) = 7.03
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 112.00 = 1390.00 FEET.
*************************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.21
 RAINFALL INTENSITY(INCH/HR) = 5.18
 TOTAL STREAM AREA(ACRES) = 18.30
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               34 12
*******************
 FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
 UPSTREAM ELEVATION(FEET) = 978.00
 DOWNSTREAM ELEVATION(FEET) = 977.00
 ELEVATION DIFFERENCE(FEET) =
                          1.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                               7.476
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.114
 SUBAREA RUNOFF(CFS) = 0.26
 TOTAL AREA(ACRES) =
                   0.10 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 114.00 TO NODE
                                 112.00 \text{ IS CODE} = 51
    ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 977.00 DOWNSTREAM(FEET) = 842.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1870.00 CHANNEL SLOPE = 0.0722
 CHANNEL BASE(FEET) = 24.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.441
```

```
RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.87
 AVERAGE FLOW DEPTH(FEET) = 0.17 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 15.52
 SUBAREA AREA(ACRES) = 19.90
                              SUBAREA RUNOFF(CFS) = 31.82
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.360
 TOTAL AREA(ACRES) = 20.00
                            PEAK FLOW RATE(CFS) = 31.98
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.25 FLOW VELOCITY(FEET/SEC.) = 4.89
 LONGEST FLOWPATH FROM NODE 113.00 TO NODE 112.00 = 1920.00 FEET.
********************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 15.52
 RAINFALL INTENSITY(INCH/HR) = 4.44
 TOTAL STREAM AREA(ACRES) = 20.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 31.98
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC
                         INTENSITY
                 (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
                                    (ACRE)
          34.12 12.21 5.183
                                     18.30
   1
          31.98
                 15.52
    2
                            4.441
                                        20.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
         (CFS)
                 (MIN.) (INCH/HOUR)
 NUMBER
          59.28 12.21 5.183
    1
          61.21 15.52
                           4.441
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 61.21 Tc(MIN.) = 15.52
 TOTAL AREA(ACRES) = 38.30
 LONGEST FLOWPATH FROM NODE
                         113.00 TO NODE
                                      112.00 = 1920.00 FEET.
*******************
 FLOW PROCESS FROM NODE 112.00 TO NODE 109.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 842.00 DOWNSTREAM(FEET) = 786.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 875.00 CHANNEL SLOPE = 0.0640
 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.200
 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
```

```
SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 68.85
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 10.37
 AVERAGE FLOW DEPTH(FEET) = 1.08 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 16.93
 SUBAREA AREA(ACRES) = 10.10
                           SUBAREA RUNOFF(CFS) = 15.27
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.360
 TOTAL AREA(ACRES) = 48.40
                           PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.11 FLOW VELOCITY(FEET/SEC.) = 10.58
 LONGEST FLOWPATH FROM NODE 113.00 TO NODE 109.00 = 2795.00 FEET.
********************
 FLOW PROCESS FROM NODE
                   109.00 TO NODE 109.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                AREA
        (CFS) (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
 1 73.15 16.93 4.200 48.40
LONGEST FLOWPATH FROM NODE 113.00 TO NODE 109.00 = 2795.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                AREA
 NUMBER
         (CFS) (MIN.) (INCH/HOUR) (ACRE)
        122.01 18.48 3.968 101.90
   1
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE
                                   109.00 = 3684.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                      INTENSITY
       (CFS) (MIN.) (INCH/HOUR)
184.91 16.93 4.200
 NUMBER
    1
       191.13
                18.48
                          3.968
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 191.13 Tc(MIN.) = 18.48
 TOTAL AREA(ACRES) =
                 150.30
********************
 FLOW PROCESS FROM NODE
                   109.00 TO NODE 109.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<
______
******************
 FLOW PROCESS FROM NODE 109.00 TO NODE 115.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 786.00 DOWNSTREAM(FEET) = 772.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 526.00 CHANNEL SLOPE = 0.0266
 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.762
```

LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000

```
SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 194.92
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.49
 AVERAGE FLOW DEPTH(FEET) = 2.58 TRAVEL TIME(MIN.) = 1.60
 Tc(MIN.) = 20.08
 SUBAREA AREA(ACRES) = 6.70
                            SUBAREA RUNOFF(CFS) = 7.56
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.319
 TOTAL AREA(ACRES) = 157.00
                             PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 2.55 FLOW VELOCITY(FEET/SEC.) = 5.48
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 115.00 = 4210.00 FEET.
********************
 FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 20.08
 RAINFALL INTENSITY(INCH/HR) = 3.76
 TOTAL STREAM AREA(ACRES) = 157.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 191.13
*********************
 FLOW PROCESS FROM NODE 116.00 TO NODE 117.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                              50.00
 UPSTREAM ELEVATION(FEET) = 895.50
 DOWNSTREAM ELEVATION(FEET) = 894.00
 ELEVATION DIFFERENCE(FEET) = 1.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.060
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.382
 SUBAREA RUNOFF(CFS) = 0.22
 TOTAL AREA(ACRES) =
                   0.10 TOTAL RUNOFF(CFS) = 0.22
*********************
 FLOW PROCESS FROM NODE 117.00 TO NODE 115.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 894.00 DOWNSTREAM(FEET) = 772.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1120.00 CHANNEL SLOPE = 0.1089
 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.152
 LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.54
 AVERAGE FLOW DEPTH(FEET) = 0.32 TRAVEL TIME(MIN.) = 5.27
```

```
Tc(MIN.) = 12.33
 SUBAREA AREA(ACRES) = 9.10 SUBAREA RUNOFF(CFS) = 14.07
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 9.20
                              PEAK FLOW RATE(CFS) = 14.22
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 FLOW VELOCITY(FEET/SEC.) = 4.44
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 115.00 = 1170.00 FEET.
*************************
 FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.33
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 9.20
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                14.22
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                                    (ACRE)
         191.13 20.08 3.762
14.22 12.33 5.152
    1
                                     157.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                         INTENSITY
 STREAM RUNOFF TC
         (CFS) (MIN.) (INCH/HOUR)
131.60 12.33 5.152
 NUMBER
    1
         201.52 20.08
                           3.762
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 201.52 Tc(MIN.) = 20.08
 TOTAL AREA(ACRES) = 166.20
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 115.00 = 4210.00 FEET.
*********************
 FLOW PROCESS FROM NODE 115.00 TO NODE 118.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 772.00 DOWNSTREAM(FEET) = 636.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1966.00 CHANNEL SLOPE = 0.0692
 CHANNEL BASE(FEET) = 24.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.269
 LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.71
 AVERAGE FLOW DEPTH(FEET) = 1.19 TRAVEL TIME(MIN.) = 4.88
 Tc(MIN.) = 24.96
```

```
SUBAREA AREA(ACRES) = 40.10 SUBAREA RUNOFF(CFS) = 39.33
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.314
 TOTAL AREA(ACRES) = 206.30
                            PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.16 FLOW VELOCITY(FEET/SEC.) = 6.62
 LONGEST FLOWPATH FROM NODE
                      101.00 TO NODE 118.00 = 6176.00 FEET.
*********************
 FLOW PROCESS FROM NODE
                  118.00 TO NODE
                                118.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
*******************
 FLOW PROCESS FROM NODE
                   119.00 TO NODE 120.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 935.50
 DOWNSTREAM ELEVATION(FEET) = 934.00
ELEVATION DIFFERENCE(FEET) = 1.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.382
 SUBAREA RUNOFF(CFS) = 0.22
 TOTAL AREA(ACRES) =
                  0.10 TOTAL RUNOFF(CFS) =
***********************
 FLOW PROCESS FROM NODE 120.00 TO NODE 118.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 934.00 DOWNSTREAM(FEET) = 636.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2105.00 CHANNEL SLOPE = 0.1416
 CHANNEL BASE(FEET) = 14.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.449
 LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.17
 AVERAGE FLOW DEPTH(FEET) = 0.32 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 15.48
 SUBAREA AREA(ACRES) = 26.90
                           SUBAREA RUNOFF(CFS) = 35.90
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 27.00
                          PEAK FLOW RATE(CFS) = 36.03
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 FLOW VELOCITY(FEET/SEC.) = 5.24
 LONGEST FLOWPATH FROM NODE 119.00 TO NODE 118.00 = 2155.00 FEET.
***********************
 FLOW PROCESS FROM NODE 118.00 TO NODE 118.00 IS CODE = 10
______
```

```
>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
************************
 FLOW PROCESS FROM NODE
                   121.00 TO NODE
                                122.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
 UPSTREAM ELEVATION(FEET) = 937.00
 DOWNSTREAM ELEVATION(FEET) = 936.00
 ELEVATION DIFFERENCE(FEET) =
                       1.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.765
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) =
                  0.10 TOTAL RUNOFF(CFS) =
************************
 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 936.00 DOWNSTREAM(FEET) = 800.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1182.00 CHANNEL SLOPE = 0.1151
 CHANNEL BASE(FEET) = 40.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.991
 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.70
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.04
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 4.87
 Tc(MIN.) = 12.95
 SUBAREA AREA(ACRES) = 11.60
                          SUBAREA RUNOFF(CFS) = 20.84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.359
 TOTAL AREA(ACRES) = 11.70
                        PEAK FLOW RATE(CFS) = 20.99
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 5.41
 LONGEST FLOWPATH FROM NODE 121.00 TO NODE 123.00 = 1232.00 FEET.
***********************
 FLOW PROCESS FROM NODE 123.00 TO NODE 123.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.95
 RAINFALL INTENSITY(INCH/HR) = 4.99
 TOTAL STREAM AREA(ACRES) = 11.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
************************
 FLOW PROCESS FROM NODE
                   124.00 TO NODE 125.00 IS CODE = 21
```

```
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1015.00
 DOWNSTREAM ELEVATION(FEET) = 1014.00
 ELEVATION DIFFERENCE(FEET) = 1.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.082
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.765
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) =
                   0.10 TOTAL RUNOFF(CFS) = 0.20
*********************
 FLOW PROCESS FROM NODE 125.00 TO NODE 123.00 IS CODE = 51
_____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1014.00 DOWNSTREAM(FEET) = 800.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2690.00 CHANNEL SLOPE = 0.0796
 CHANNEL BASE(FEET) = 12.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.793
 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 35.61
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.82
 AVERAGE FLOW DEPTH(FEET) = 0.54 TRAVEL TIME(MIN.) = 11.74
 Tc(MIN.) = 19.82
 SUBAREA AREA(ACRES) =
                  49.80
                            SUBAREA RUNOFF(CFS) = 68.00
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.360
 TOTAL AREA(ACRES) = 49.90
                            PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.75 FLOW VELOCITY(FEET/SEC.) = 4.64
 LONGEST FLOWPATH FROM NODE 124.00 TO NODE 123.00 = 2740.00 FEET.
********************
 FLOW PROCESS FROM NODE 123.00 TO NODE 123.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 19.82
 RAINFALL INTENSITY(INCH/HR) = 3.79
 TOTAL STREAM AREA(ACRES) = 49.90
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 68.11
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                Tc
                       INTENSITY
                                   AREA
 NUMBER
         (CFS)
                (MIN.) (INCH/HOUR)
                                  (ACRE)
         20.99 12.95
    1
                         4.991
                                    11.70
    2
         68.11
                19.82
                          3.793
                                    49.90
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF To INTENSITY (CFS) (MIN.) (INCH/HOUR) 65.50 12.95 4.991 NUMBER (CFS) 1 84.07 19.82 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 84.07 Tc(MIN.) = 19.82TOTAL AREA(ACRES) = 61.60 LONGEST FLOWPATH FROM NODE 124.00 TO NODE 123.00 = 2740.00 FEET. ********************* FLOW PROCESS FROM NODE 123.00 TO NODE 126.00 IS CODE = 51 ______ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < < ______ ELEVATION DATA: UPSTREAM(FEET) = 800.00 DOWNSTREAM(FEET) = 787.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 542.00 CHANNEL SLOPE = 0.0240 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 5.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.554 LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000 SOIL CLASSIFICATION IS "C" S.C.S. CURVE NUMBER (AMC II) = 81 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.29 AVERAGE FLOW DEPTH(FEET) = 1.54 TRAVEL TIME(MIN.) = 2.10 Tc(MIN.) = 21.93SUBAREA RUNOFF(CFS) = SUBAREA AREA(ACRES) = 4.10 AREA-AVERAGE RUNOFF COEFFICIENT = 0.356 TOTAL AREA(ACRES) = 65.70 PEAK FLOW RATE(CFS) = END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.51 FLOW VELOCITY(FEET/SEC.) = 4.26 LONGEST FLOWPATH FROM NODE 124.00 TO NODE 126.00 = 3282.00 FEET. ****************** 126.00 TO NODE FLOW PROCESS FROM NODE 126.00 IS CODE = ______ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 21.93 RAINFALL INTENSITY(INCH/HR) = 3.55TOTAL STREAM AREA(ACRES) = 65.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = ************************ FLOW PROCESS FROM NODE 127.00 TO NODE 128.00 IS CODE = 21

```
INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
 UPSTREAM ELEVATION(FEET) = 898.00
 DOWNSTREAM ELEVATION(FEET) = 896.00
 ELEVATION DIFFERENCE(FEET) = 2.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.853
 SUBAREA RUNOFF(CFS) = 0.24
                    0.10 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*******************
 FLOW PROCESS FROM NODE 128.00 TO NODE 126.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 896.00 DOWNSTREAM(FEET) = 787.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1470.00 CHANNEL SLOPE = 0.0741
 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.208
 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 13.00
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.34
 AVERAGE FLOW DEPTH(FEET) = 0.22 TRAVEL TIME(MIN.) = 10.46
 Tc(MIN.) = 16.88
 SUBAREA AREA(ACRES) = 15.90 SUBAREA RUNOFF(CFS) = 24.08
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.360
 TOTAL AREA(ACRES) = 16.00
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 FLOW VELOCITY(FEET/SEC.) = 3.01
 LONGEST FLOWPATH FROM NODE
                        127.00 TO NODE 126.00 = 1520.00 FEET.
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 16.88
 RAINFALL INTENSITY(INCH/HR) = 4.21
                         16.00
 TOTAL STREAM AREA(ACRES) =
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC
                         INTENSITY
                                      AREA
         (CFS) (MIN.) (INCH/HOUR)
 NUMBER
                                     (ACRE)

      84.07
      21.93
      3.554

      24.21
      16.88
      4.208

   1
                                       65.70
                                        16.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                         INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
 NUMBER
```

```
95.22 16.88
                         4.208
         104.52 21.93
                         3.554
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 104.52 Tc(MIN.) = 21.93
 TOTAL AREA(ACRES) = 81.70
 LONGEST FLOWPATH FROM NODE
                       124.00 TO NODE
                                    126.00 = 3282.00 FEET.
*********************
 FLOW PROCESS FROM NODE 126.00 TO NODE
                                 129.00 \text{ IS CODE} = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 787.00 DOWNSTREAM(FEET) = 720.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1205.00 CHANNEL SLOPE = 0.0556
 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.178
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 111.10
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.84
 AVERAGE FLOW DEPTH(FEET) = 0.83 TRAVEL TIME(MIN.) = 4.15
 Tc(MIN.) = 26.07
 SUBAREA AREA(ACRES) = 13.80
                           SUBAREA RUNOFF(CFS) = 13.16
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.349
 TOTAL AREA(ACRES) = 95.50
                           PEAK FLOW RATE(CFS) = 105.80
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.81 FLOW VELOCITY(FEET/SEC.) = 4.75
 LONGEST FLOWPATH FROM NODE 124.00 TO NODE 129.00 = 4487.00 FEET.
************************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 26.07
 RAINFALL INTENSITY(INCH/HR) = 3.18
 TOTAL STREAM AREA(ACRES) = 95.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                             105.80
************************
 FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 963.00
 DOWNSTREAM ELEVATION(FEET) = 962.00
 ELEVATION DIFFERENCE(FEET) =
                          1.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.114
```

```
SUBAREA RUNOFF(CFS) =
                    0.26
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
************************
 FLOW PROCESS FROM NODE 131.00 TO NODE
                                  129.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 962.00 DOWNSTREAM(FEET) = 720.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 3400.00 CHANNEL SLOPE = 0.0712
 CHANNEL BASE(FEET) = 18.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.416
 LEGUMES(STRAIGHT ROW) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 81
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.58
 AVERAGE FLOW DEPTH(FEET) = 0.45 TRAVEL TIME(MIN.) = 15.84
 Tc(MIN.) = 23.32
 SUBAREA AREA(ACRES) = 55.60
                            SUBAREA RUNOFF(CFS) = 56.97
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 55.70
                           PEAK FLOW RATE(CFS) = 57.10
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.62 FLOW VELOCITY(FEET/SEC.) = 4.36
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 129.00 = 3450.00 FEET.
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 23.32
 RAINFALL INTENSITY(INCH/HR) = 3.42
 TOTAL STREAM AREA(ACRES) = 55.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 57.10
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                 Tc
                        INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
 NUMBER
                                   (ACRE)
        105.80 26.07
                       3.178
                                    95.50
    1
          57.10 23.32
                           3.416
                                      55.70
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
                (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
        155.54 23.32 3.416
    1
        158.93 26.07
                         3.178
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 158.93 Tc(MIN.) = 26.07
 TOTAL AREA(ACRES) = 151.20
```

```
LONGEST FLOWPATH FROM NODE 124.00 TO NODE 129.00 = 4487.00 FEET.
FLOW PROCESS FROM NODE 129.00 TO NODE 118.00 IS CODE = 51
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 720.00 DOWNSTREAM(FEET) = 636.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 770.00 CHANNEL SLOPE = 0.1091
 CHANNEL BASE(FEET) = 12.00 "Z" FACTOR = 6.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.048
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 163.95
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 7.35
 AVERAGE FLOW DEPTH(FEET) = 1.17 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 27.82
                            SUBAREA RUNOFF(CFS) = 10.06
 SUBAREA AREA(ACRES) = 11.00
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.329
 TOTAL AREA(ACRES) = 162.20
                            PEAK FLOW RATE(CFS) = 162.48
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.17 FLOW VELOCITY(FEET/SEC.) = 7.30
 LONGEST FLOWPATH FROM NODE 124.00 TO NODE 118.00 = 5257.00 FEET.
********************
 FLOW PROCESS FROM NODE 118.00 TO NODE 118.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                 AREA
 NUMBER
         (CFS) (MIN.) (INCH/HOUR) (ACRE)
 1 162.48 27.82 3.048 162.20
LONGEST FLOWPATH FROM NODE 124.00 TO NODE 118.00 = 5257.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                 AREA
         (CFS) (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
 1 211.84 24.96 3.269 206.30
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 118.00 = 6176.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
357.61 24.96 3.269
360.00 27.82 3.048
 NUMBER
   1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 360.00 Tc(MIN.) = 27.82
 TOTAL AREA(ACRES) =
                  368.50
*******************
 FLOW PROCESS FROM NODE 118.00 TO NODE 118.00 IS CODE = 11
______
```

>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<

** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY (CFS) (MIN.) (INCH/HOUR) (ACRE) 360.00 27.82 3.048 368.50 NUMBER 1 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 118.00 = 6176.00 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA (MIN.) (INCH/HOUR) (ACRE) (CFS) NUMBER 36.03 15.48 4.449 27.00 WPATH FROM NODE 119.00 TO NODE 118.00 = 2155.00 FEET. 1 LONGEST FLOWPATH FROM NODE ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY (MIN.) (INCH/HOUR) NUMBER (CFS) 236.35 15.48 384.69 27.82 1 4.449 3.048 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 384.69 Tc(MIN.) = 27.82TOTAL AREA(ACRES) = 395.50 ******************** FLOW PROCESS FROM NODE 118.00 TO NODE 118.00 IS CODE = 12 ----->>>>CLEAR MEMORY BANK # 1 <<<<< ______ ************************ FLOW PROCESS FROM NODE 118.00 TO NODE 118.00 IS CODE = 12 ______ >>>>CLEAR MEMORY BANK # 2 <<<<

100-YEAR HYDROLOGY CALCULATIONS POST-DEVELOPMENT CONDITIONS

************************ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1503 Analysis prepared by: LANDMARK CONSULTING 9555 GENESEE AVE. SUITE 200 SAN DIEGO, CA 92121 858-587-8070, FAX: 858-587-8750 ************************** DESCRIPTION OF STUDY ******************** * LILAC HILLS RANCH * IMPLEMENTATION TM * POST-DEVELOPMENT, 100-YEAR STORM FILE NAME: 1037I1P.DAT TIME/DATE OF STUDY: 10:23 01/23/2013 ______ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ______ 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 3.500 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) SIDE / SIDE/ WAY NO. (FT) (FT) (FT)(FT) 1 30.0 20.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 5.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ************************ 101.00 TO NODE FLOW PROCESS FROM NODE 102.00 IS CODE =

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

39

```
RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 978.00
 DOWNSTREAM ELEVATION(FEET) = 977.00
ELEVATION DIFFERENCE(FEET) = 1.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.515
 SUBAREA RUNOFF(CFS) = 0.46
 TOTAL AREA(ACRES) =
                   0.10 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 977.00 DOWNSTREAM(FEET) = 894.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1432.00 CHANNEL SLOPE = 0.0580
 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.216
 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.71
 AVERAGE FLOW DEPTH(FEET) = 0.18 TRAVEL TIME(MIN.) = 6.44
 Tc(MIN.) = 12.09
 SUBAREA AREA(ACRES) = 13.10 SUBAREA RUNOFF(CFS) = 24.60
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.361
 TOTAL AREA(ACRES) = 13.2
                           PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.25 FLOW VELOCITY(FEET/SEC.) = 4.59
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 =
******************
 FLOW PROCESS FROM NODE
                                   104.00 \text{ IS CODE} = 31
                     103.00 TO NODE
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 891.00 DOWNSTREAM(FEET) = 890.00
 FLOW LENGTH(FEET) = 52.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.60
 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 24.88
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 12.18
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE
                                      104.00 =
                                               1534.00 FEET.
**********************
 FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
```

```
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.18
 RAINFALL INTENSITY(INCH/HR) = 5.19
 TOTAL STREAM AREA(ACRES) = 13.20
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 24.88
*****************
 FLOW PROCESS FROM NODE 105.00 TO NODE
                                    106.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 925.90
 DOWNSTREAM ELEVATION(FEET) = 925.00
 ELEVATION DIFFERENCE(FEET) = 0.90
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.859
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.325
 SUBAREA RUNOFF(CFS) = 0.45
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.45
**********************
 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 UPSTREAM ELEVATION(FEET) = 922.00 DOWNSTREAM ELEVATION(FEET) = 912.00
 STREET LENGTH(FEET) = 825.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.99
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.36
  HALFSTREET FLOOD WIDTH(FEET) = 11.68
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.69
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.97
 STREET FLOW TRAVEL TIME(MIN.) = 5.11 Tc(MIN.) = 10.97
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.556
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 2.30 SUBAREA RUNOFF(CFS) = 6.90
```

```
TOTAL AREA(ACRES) = 2.4 PEAK FLOW RATE(CFS) = 7.20
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.80
 FLOW VELOCITY(FEET/SEC.) = 3.12 DEPTH*VELOCITY(FT*FT/SEC.) = 1.32
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 107.00 = 875.00 FEET.
******************
 FLOW PROCESS FROM NODE 107.00 TO NODE 104.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 906.00 DOWNSTREAM(FEET) = 890.00
 FLOW LENGTH(FEET) = 231.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.66
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.20
 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) = 11.27
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 104.00 = 1106.00 FEET.
********************
 FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.27
 RAINFALL INTENSITY(INCH/HR) = 5.46
 TOTAL STREAM AREA(ACRES) = 2.40
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                                   (ACRE)
         24.88 12.18 5.194
    1
                                    13.20
          7.20 11.27
                          5.459
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
 NUMBER
         (CFS) (MIN.) (INCH/HOUR)
         30.24 11.27 5.459
   1
         31.73 12.18
                         5.194
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 31.73 Tc(MIN.) = 12.18
 TOTAL AREA(ACRES) = 15.6
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 1534.00 FEET.
```

42

```
FLOW PROCESS FROM NODE 104.00 TO NODE 108.00 IS CODE = 31
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 890.00 DOWNSTREAM(FEET) = 886.00
 FLOW LENGTH(FEET) = 98.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 15.07
 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 31.73
 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 12.28
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 108.00 =
***********************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.28
 RAINFALL INTENSITY(INCH/HR) = 5.16
 TOTAL STREAM AREA(ACRES) = 15.60
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
***********************
 FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 904.30
 DOWNSTREAM ELEVATION(FEET) = 904.00
 ELEVATION DIFFERENCE(FEET) = 0.30
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.451
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.573
 SUBAREA RUNOFF(CFS) = 0.35
 TOTAL AREA(ACRES) =
                 0.10 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << < <
______
 UPSTREAM ELEVATION(FEET) = 896.00 DOWNSTREAM ELEVATION(FEET) = 892.00
 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.58
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) = 10.04
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.29
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.75
 STREET FLOW TRAVEL TIME(MIN.) = 2.84 Tc(MIN.) = 11.29
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.453
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 4.42
                      1.6
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.93
 FLOW VELOCITY(FEET/SEC.) = 2.63 DEPTH*VELOCITY(FT*FT/SEC.) = 1.01
 LONGEST FLOWPATH FROM NODE 109.00 TO NODE 111.00 = 440.00 FEET.
*******************
 FLOW PROCESS FROM NODE 111.00 TO NODE 108.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 886.50 DOWNSTREAM(FEET) = 886.00
 FLOW LENGTH(FEET) = 34.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.42
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                    4.71
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 11.38
                                         108.00 = 474.00 FEET.
 LONGEST FLOWPATH FROM NODE 109.00 TO NODE
***********************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.38
 RAINFALL INTENSITY(INCH/HR) = 5.43
 TOTAL STREAM AREA(ACRES) = 1.60
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.71
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                       AREA
 NUMBER
          (CFS) (MIN.) (INCH/HOUR)
                                       (ACRE)
```

```
5.425
          4.71
               11.38
                                    1.60
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                      INTENSITY
 NUMBER
        (CFS) (MIN.) (INCH/HOUR)
                      5.425
         34.92 11.38
    1
         36.22 12.28
    2
                        5.164
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 36.22 Tc(MIN.) = 12.28
TOTAL AREA(ACRES) = 17.2
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 108.00 = 1632.00 FEET.
********************
 FLOW PROCESS FROM NODE 108.00 TO NODE 112.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 886.00 DOWNSTREAM(FEET) = 876.00
 FLOW LENGTH(FEET) = 206.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 16.59
 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 36.22
 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 12.49
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 112.00 = 1838.00 FEET.
******************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.49
 RAINFALL INTENSITY(INCH/HR) = 5.11
 TOTAL STREAM AREA(ACRES) = 17.20
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
******************
 FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
 UPSTREAM ELEVATION(FEET) = 903.80
 DOWNSTREAM ELEVATION(FEET) = 903.00
ELEVATION DIFFERENCE(FEET) = 0.80
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.094
```

31.73 12.28 5.164

15.60

1

```
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.117
 SUBAREA RUNOFF(CFS) = 0.44
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE 114.00 TO NODE 115.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 UPSTREAM ELEVATION(FEET) = 896.00 DOWNSTREAM ELEVATION(FEET) = 882.00
 STREET LENGTH(FEET) = 380.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.28
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.95
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.16
 STREET FLOW TRAVEL TIME(MIN.) = 1.60 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.981
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 5.65
TOTAL AREA(ACRES) = 1.6 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 10.98
 FLOW VELOCITY(FEET/SEC.) = 4.56 DEPTH*VELOCITY(FT*FT/SEC.) = 1.58
 LONGEST FLOWPATH FROM NODE 113.00 TO NODE 115.00 =
                                                  430.00 FEET.
*******************
 FLOW PROCESS FROM NODE 115.00 TO NODE 112.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 876.50 DOWNSTREAM(FEET) = 876.00
 FLOW LENGTH(FEET) = 21.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.17
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.03
 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 7.74
```

```
LONGEST FLOWPATH FROM NODE 113.00 TO NODE 112.00 = 451.00 FEET.
********************
                   112.00 TO NODE
 FLOW PROCESS FROM NODE
                                 112.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.74
 RAINFALL INTENSITY(INCH/HR) = 6.96
 TOTAL STREAM AREA(ACRES) = 1.60
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
******************
                   116.00 TO NODE
 FLOW PROCESS FROM NODE
                                 117.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
 UPSTREAM ELEVATION(FEET) = 912.00
 DOWNSTREAM ELEVATION(FEET) = 911.00
 ELEVATION DIFFERENCE (FEET) = 1.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                               5.657
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.515
 SUBAREA RUNOFF(CFS) = 0.46
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
**********************
 FLOW PROCESS FROM NODE 117.00 TO NODE 118.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 UPSTREAM ELEVATION(FEET) = 911.00 DOWNSTREAM ELEVATION(FEET) = 883.00
 STREET LENGTH(FEET) = 444.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.23
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
  STREET FLOW DEPTH(FEET) = 0.27
  HALFSTREET FLOOD WIDTH(FEET) = 7.38
  AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.88
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.34
 STREET FLOW TRAVEL TIME(MIN.) = 1.52 Tc(MIN.) = 7.17
```

```
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.306
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 5.52
TOTAL AREA(ACRES) = 1.5 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.70
 FLOW VELOCITY(FEET/SEC.) = 5.59 DEPTH*VELOCITY(FT*FT/SEC.) = 1.79
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE
                                       118.00 =
                                                   494.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                     118.00 TO NODE
                                    112.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 878.00 DOWNSTREAM(FEET) = 876.00
 FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 12.63
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.92
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) =
                                        7.21
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 112.00 =
                                                  519.00 FEET.
************************
 FLOW PROCESS FROM NODE
                     112.00 TO NODE
                                    112.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <><
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.21
 RAINFALL INTENSITY(INCH/HR) = 7.28
 TOTAL STREAM AREA(ACRES) = 1.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 36.22 12.49 5.109
                                       AREA
                                      (ACRE)
                                       17.20
           6.03 7.74
5.92 7.21
    2
                            6.956
                                        1.60
                  7.21
                            7.284
                                         1.50
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                         INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
 NUMBER
          36.93 7.21 7.284
    1
          38.28
                  7.74
                           6.956
```

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 44.80 Tc(MIN.) = 12.49TOTAL AREA(ACRES) = 20.3 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 112.00 = 1838.00 FEET. ****************** FLOW PROCESS FROM NODE 112.00 TO NODE 119.00 IS CODE = 31 ______ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < < ______ ELEVATION DATA: UPSTREAM(FEET) = 876.00 DOWNSTREAM(FEET) = 875.50 FLOW LENGTH(FEET) = 23.00 MANNING'S N = 0.013DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.93 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 44.80PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 12.52 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 119.00 = 1861.00 FEET. *********************** 119.00 IS CODE = 10 FLOW PROCESS FROM NODE 119.00 TO NODE ______ >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<< ______ *********************** FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21 ______ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< ______ RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400 SOIL CLASSIFICATION IS "C" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION(FEET) = 990.00 DOWNSTREAM ELEVATION(FEET) = 989.00 ELEVATION DIFFERENCE(FEET) = 1.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.657 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.515 SUBAREA RUNOFF(CFS) = 0.46 0.10 TOTAL RUNOFF(CFS) = TOTAL AREA(ACRES) = ********************* FLOW PROCESS FROM NODE 121.00 TO NODE 123.00 IS CODE = 51______ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>> ______ ELEVATION DATA: UPSTREAM(FEET) = 989.00 DOWNSTREAM(FEET) = 910.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 50.00 CHANNEL SLOPE = 1.5800 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.401 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600

```
SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 17.28
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.96
 AVERAGE FLOW DEPTH(FEET) = 0.12 TRAVEL TIME(MIN.) = 0.12
 Tc(MIN.) =
           5.78
 SUBAREA AREA(ACRES) = 11.10 SUBAREA RUNOFF(CFS) = 33.57
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.362
 TOTAL AREA(ACRES) = 11.2
                          PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.17 FLOW VELOCITY(FEET/SEC.) = 9.18
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 123.00 = 100.00 FEET.
******************
 FLOW PROCESS FROM NODE 123.00 TO NODE 124.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 905.00 DOWNSTREAM(FEET) = 889.00
 FLOW LENGTH(FEET) = 124.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 23.05
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 34.02
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) =
                                     5.87
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 124.00 =
                                               224.00 FEET.
************************
 FLOW PROCESS FROM NODE 124.00 TO NODE 124.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.87
 RAINFALL INTENSITY(INCH/HR) = 8.32
 TOTAL STREAM AREA(ACRES) = 11.20
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              34.02
********************
 FLOW PROCESS FROM NODE 125.00 TO NODE 126.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                              50.00
 UPSTREAM ELEVATION(FEET) = 919.20
 DOWNSTREAM ELEVATION(FEET) = 918.70
ELEVATION DIFFERENCE(FEET) = 0.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.128
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.337
 SUBAREA RUNOFF(CFS) = 0.40
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
```

```
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE
                                   124.00 \text{ IS CODE} = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 916.00 DOWNSTREAM ELEVATION(FEET) = 894.00
 STREET LENGTH(FEET) = 422.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.37
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
  HALFSTREET FLOOD WIDTH(FEET) = 7.91
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.53
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.29
 STREET FLOW TRAVEL TIME(MIN.) = 1.55 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.461
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 5.93
                    1.8
 TOTAL AREA(ACRES) =
                             PEAK FLOW RATE(CFS) =
                                                      6.28
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.43
 FLOW VELOCITY(FEET/SEC.) = 5.21 DEPTH*VELOCITY(FT*FT/SEC.) = 1.74
 LONGEST FLOWPATH FROM NODE 125.00 TO NODE 124.00 = 472.00 FEET.
***********************
 FLOW PROCESS FROM NODE 124.00 TO NODE 124.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.68
 RAINFALL INTENSITY(INCH/HR) = 6.46
 TOTAL STREAM AREA(ACRES) = 1.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 6.28
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  TC INTENSITY
                                     AREA
 NUMBER
                                     (ACRE)
         (CFS)
                 (MIN.) (INCH/HOUR)
   1
         34.02
                 5.87
                          8.318
                                      11.20
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR $\ 2\$ STREAMS.

SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.371 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.887

** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY (MIN.) (INCH/HOUR) NUMBER (CFS) 5.87 8.318 38.27 1 8.68 32.71 6.461 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 38.27 Tc(MIN.) = 5.87TOTAL AREA(ACRES) = 13.0 LONGEST FLOWPATH FROM NODE 125.00 TO NODE 124.00 = 472.00 FEET. ******************** FLOW PROCESS FROM NODE 124.00 TO NODE 127.00 IS CODE = 31 ______ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < < ______ ELEVATION DATA: UPSTREAM(FEET) = 889.00 DOWNSTREAM(FEET) = 888.60 FLOW LENGTH(FEET) = 36.00 MANNING'S N = 0.013DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.49 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 38.27PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 5.93 LONGEST FLOWPATH FROM NODE 125.00 TO NODE 127.00 = 508.00 FEET. ********************* FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 1 ______ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.93 RAINFALL INTENSITY(INCH/HR) = 8.26 TOTAL STREAM AREA(ACRES) = 13.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = ********************* FLOW PROCESS FROM NODE 128.00 TO NODE 129.00 IS CODE = 21______ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< ______ RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400 SOIL CLASSIFICATION IS "C" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION(FEET) = 919.70 DOWNSTREAM ELEVATION(FEET) = 919.00 ELEVATION DIFFERENCE(FEET) = 0.70

```
SUBAREA RUNOFF(CFS) = 0.43
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE 129.00 TO NODE 127.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 UPSTREAM ELEVATION(FEET) = 916.00 DOWNSTREAM ELEVATION(FEET) = 894.00
 STREET LENGTH(FEET) = 422.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.45
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.26
  HALFSTREET FLOOD WIDTH(FEET) = 6.78
  AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.24
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.11
 STREET FLOW TRAVEL TIME(MIN.) = 1.66 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.794
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 4.04
 TOTAL AREA(ACRES) =
                   1.2
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.90
 FLOW VELOCITY(FEET/SEC.) = 4.83 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 128.00 TO NODE 127.00 = 472.00 FEET.
***********************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.03
 RAINFALL INTENSITY(INCH/HR) = 6.79
 TOTAL STREAM AREA(ACRES) = 1.20
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.40
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                     AREA
```

```
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
         38.27
                5.93 8.261
    1
                                  13.00
          4.40
                8.03
                        6.794
    2
                                   1.20
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
 NUMBER

      41.52
      5.93
      8.261

      35.88
      8.03
      6.794

    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 41.52 Tc(MIN.) = 5.93
 TOTAL AREA(ACRES) = 14.2
 LONGEST FLOWPATH FROM NODE 125.00 TO NODE 127.00 = 508.00 FEET.
******************
 FLOW PROCESS FROM NODE
                   127.00 TO NODE 130.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 888.60 DOWNSTREAM(FEET) = 879.00
 FLOW LENGTH(FEET) = 296.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.73
 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 41.52
 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) =
                                   6.26
 LONGEST FLOWPATH FROM NODE 125.00 TO NODE 130.00 = 804.00 FEET.
******************
 FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
**********************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
 UPSTREAM ELEVATION(FEET) = 890.00
 DOWNSTREAM ELEVATION(FEET) = 889.50
 ELEVATION DIFFERENCE(FEET) = 0.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                             7.128
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.337
 SUBAREA RUNOFF(CFS) = 0.40
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.40
******************
```

```
FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 889.00 DOWNSTREAM ELEVATION(FEET) = 886.00
 STREET LENGTH(FEET) = 327.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.34
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.21
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.74
 STREET FLOW TRAVEL TIME(MIN.) = 2.47 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.057
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 4.58
TOTAL AREA(ACRES) = 1.5 PEAK FLOW RATE(CFS) =
                                                       4.91
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.48
 FLOW VELOCITY(FEET/SEC.) = 2.54 DEPTH*VELOCITY(FT*FT/SEC.) = 1.00
 LONGEST FLOWPATH FROM NODE 131.00 TO NODE 133.00 =
                                                   377.00 FEET.
******************
                                     134.00 IS CODE = 31
 FLOW PROCESS FROM NODE
                      133.00 TO NODE
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 881.00 DOWNSTREAM(FEET) = 880.50
 FLOW LENGTH(FEET) = 37.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.28
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.91
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) =
                                         9.69
 LONGEST FLOWPATH FROM NODE 131.00 TO NODE 134.00 =
************************
                      134.00 TO NODE
                                     134.00 \text{ IS CODE} = 1
 FLOW PROCESS FROM NODE
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.69
 RAINFALL INTENSITY(INCH/HR) = 6.02
 TOTAL STREAM AREA(ACRES) = 1.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
********************
 FLOW PROCESS FROM NODE 135.00 TO NODE 136.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
 UPSTREAM ELEVATION(FEET) = 889.00
 DOWNSTREAM ELEVATION(FEET) = 888.50
ELEVATION DIFFERENCE(FEET) = 0.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.128
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.337
 SUBAREA RUNOFF(CFS) = 0.40
 TOTAL AREA(ACRES) =
                    0.10 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 136.00 TO NODE 134.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 888.00 DOWNSTREAM ELEVATION(FEET) = 886.00
 STREET LENGTH(FEET) = 331.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.92
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.27
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.50
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.41
 STREET FLOW TRAVEL TIME(MIN.) = 3.69 Tc(MIN.) = 10.82
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.606
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
```

```
SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.03
                    1.1
 TOTAL AREA(ACRES) =
                            PEAK FLOW RATE(CFS) =
                                                      3.33
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.30
 FLOW VELOCITY(FEET/SEC.) = 1.69 DEPTH*VELOCITY(FT*FT/SEC.) = 0.53
 LONGEST FLOWPATH FROM NODE 135.00 TO NODE 134.00 = 381.00 FEET.
******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.82
 RAINFALL INTENSITY(INCH/HR) = 5.61
                        1.10
 TOTAL STREAM AREA(ACRES) =
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.33
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 4.91 9.69 6.017
                                     (ACRE)
                                      1.50
           3.33 10.82
                           5.606
                                        1.10
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
 NUMBER
         (CFS)
                 (MIN.) (INCH/HOUR)
                         6.017
    1
           7.89
                  9.69
    2
           7.90
                 10.82
                           5.606
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 7.90 Tc(MIN.) = 10.82
TOTAL AREA(ACRES) = 2.6
 LONGEST FLOWPATH FROM NODE 131.00 TO NODE 134.00 = 414.00 FEET.
***********************
 FLOW PROCESS FROM NODE 134.00 TO NODE 130.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 880.50 DOWNSTREAM(FEET) = 879.00
 FLOW LENGTH(FEET) = 43.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.10
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.90
 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 10.89
 LONGEST FLOWPATH FROM NODE 131.00 TO NODE 130.00 = 457.00 FEET.
```

```
************************
 FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF Tc
                     INTENSITY
                             AREA
 NUMBER
       (CFS)
              (MIN.) (INCH/HOUR) (ACRE)
         7.90 10.89
                     5.582
                              2.60
 LONGEST FLOWPATH FROM NODE
                    131.00 TO NODE 130.00 = 457.00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
       RUNOFF
              TC INTENSITY
 STREAM
                              AREA
        (CFS) (MIN.)
41.52 6.26
              (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
   1
                    7.973 14.20
 LONGEST FLOWPATH FROM NODE 125.00 TO NODE 130.00 = 804.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                    INTENSITY
       (CFS) (MIN.) (INCH/HOUR)
46.07 6 26
 NUMBER
       (CFS)
        46.07 6.26
36.97 10.89
   1
   2.
                       5.582
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 46.07 Tc(MIN.) = 6.26
 TOTAL AREA(ACRES) =
                 16.8
*******************
 FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
***********************
 FLOW PROCESS FROM NODE
                 130.00 TO NODE
                              119.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 879.00 DOWNSTREAM(FEET) = 875.50
 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.32
 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 46.07
 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) =
                                6.40
 LONGEST FLOWPATH FROM NODE 125.00 TO NODE
                                119.00 = 924.00 FEET.
************************
 FLOW PROCESS FROM NODE 119.00 TO NODE 119.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA
```

```
NUMBER
        (CFS) (MIN.) (INCH/HOUR) (ACRE)
         46.07 6.40
   1
                     7.861
                               16.80
 LONGEST FLOWPATH FROM NODE 125.00 TO NODE 119.00 =
                                          924.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
        RUNOFF
               TC INTENSITY
                               AREA
        (CFS)
               (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
         44.80 12.52
    1
                       5.101 20.30
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 119.00 = 1861.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                     INTENSITY
       (CFS) (MIN.) (INCH/HOUR)
68.98 6.40 7.861
 NUMBER
        68.98 6.40
74.69 12.52
    1
    2
                         5.101
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 74.69 Tc(MIN.) = 12.52
                  37.1
 TOTAL AREA(ACRES) =
******************
 FLOW PROCESS FROM NODE
                  119.00 TO NODE
                              119.00 \text{ IS CODE} = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
***********************
 FLOW PROCESS FROM NODE 119.00 TO NODE 137.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 875.50 DOWNSTREAM(FEET) = 866.00
 FLOW LENGTH(FEET) = 206.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 19.25
 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                74.69
 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) =
                                  12.70
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE
                                  137.00 = 2067.00 FEET.
***********************
 FLOW PROCESS FROM NODE 137.00 TO NODE
                               137.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.70
 RAINFALL INTENSITY(INCH/HR) = 5.05
 TOTAL STREAM AREA(ACRES) = 37.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                            74.69
**********************
 FLOW PROCESS FROM NODE 138.00 TO NODE 139.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
```

```
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 919.40
 DOWNSTREAM ELEVATION (FEET) = 918.90
 ELEVATION DIFFERENCE(FEET) =
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.337
 SUBAREA RUNOFF(CFS) = 0.40
 TOTAL AREA(ACRES) =
                     0.10 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE
                      139.00 TO NODE
                                     140.00 \text{ IS CODE} = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 918.90 DOWNSTREAM ELEVATION(FEET) = 871.00
 STREET LENGTH(FEET) = 633.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.23
   HALFSTREET FLOOD WIDTH(FEET) =
                              5.05
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.63
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.05
 STREET FLOW TRAVEL TIME(MIN.) = 2.28 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.134
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 2.65
TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) =
                                                       2.98
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 6.78
 FLOW VELOCITY(FEET/SEC.) = 5.16 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 138.00 TO NODE 140.00 =
                                                   683.00 FEET.
******************
 FLOW PROCESS FROM NODE
                      140.00 TO NODE
                                     137.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
```

```
______
 ELEVATION DATA: UPSTREAM(FEET) = 866.50 DOWNSTREAM(FEET) = 866.00
 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.77
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  2.98
 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) =
                                    9.43
 LONGEST FLOWPATH FROM NODE 138.00 TO NODE
                                    137.00 =
*******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.43
 RAINFALL INTENSITY(INCH/HR) = 6.13
 TOTAL STREAM AREA(ACRES) = 0.90
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.98
**********************
 FLOW PROCESS FROM NODE 141.00 TO NODE 142.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
 UPSTREAM ELEVATION(FEET) = 877.00
 DOWNSTREAM ELEVATION(FEET) = 876.50
 ELEVATION DIFFERENCE(FEET) = 0.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.337
 SUBAREA RUNOFF(CFS) = 0.40
 TOTAL AREA(ACRES) =
                   0.10 TOTAL RUNOFF(CFS) = 0.40
***********************
 FLOW PROCESS FROM NODE 142.00 TO NODE 143.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
_____
 UPSTREAM ELEVATION(FEET) = 876.00 DOWNSTREAM ELEVATION(FEET) = 871.00
 STREET LENGTH(FEET) = 115.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
```

```
Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.24
   HALFSTREET FLOOD WIDTH(FEET) = 5.92
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.68
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.90
 STREET FLOW TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) = 7.65
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.010
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.65
TOTAL AREA(ACRES) = 0.8 PEAK FLOW RATE(CFS) =
                             PEAK FLOW RATE(CFS) = 3.03
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.84
 FLOW VELOCITY(FEET/SEC.) = 4.13 DEPTH*VELOCITY(FT*FT/SEC.) = 1.17
 LONGEST FLOWPATH FROM NODE 141.00 TO NODE 143.00 = 165.00 FEET.
***********************
                      143.00 TO NODE
 FLOW PROCESS FROM NODE
                                      137.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < >
______
 ELEVATION DATA: UPSTREAM(FEET) = 866.50 DOWNSTREAM(FEET) = 866.00
 FLOW LENGTH(FEET) = 34.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.69
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.03
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) =
                                         7.75
 LONGEST FLOWPATH FROM NODE 141.00 TO NODE 137.00 =
                                                   199.00 FEET.
******************
 FLOW PROCESS FROM NODE
                                     137.00 IS CODE = 1
                      137.00 TO NODE
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.75
 RAINFALL INTENSITY(INCH/HR) =
                           6.95
 TOTAL STREAM AREA(ACRES) = 0.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  3.03
         RUNOFF TC INTENSITY AREA
(CFS) (MIN.) (INCH/HOUR) (ACRE)
74.69 12.70 5.055 37.10
2.98 9.43 6.126
3.03 7.75
 ** CONFLUENCE DATA **
 STREAM RUNOFF
 NUMBER
                                       37.10
    1
                                         0.90
     2
     3
                                         0.80
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS.

```
** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF Tc
                       INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
51.05 7.75 6.952
 NUMBER
    1
    2
         61.10
                9.43
                        6.126
         79.35 12.70
                        5.055
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 79.35 Tc(MIN.) = 12.70
 TOTAL AREA(ACRES) = 38.8
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 137.00 = 2067.00 FEET.
********************
 FLOW PROCESS FROM NODE 137.00 TO NODE 144.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 866.00 DOWNSTREAM(FEET) = 864.00
 FLOW LENGTH(FEET) = 143.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.55
 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 79.35
 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) = 12.89
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 144.00 = 2210.00 FEET.
******************
 FLOW PROCESS FROM NODE
                   144.00 TO NODE
                                144.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.89
 RAINFALL INTENSITY(INCH/HR) = 5.01
 TOTAL STREAM AREA(ACRES) = 38.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
**********************
 FLOW PROCESS FROM NODE 145.00 TO NODE
                                146.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                             50.00
 UPSTREAM ELEVATION(FEET) = 914.00
 DOWNSTREAM ELEVATION(FEET) = 913.50
ELEVATION DIFFERENCE(FEET) = 0.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.337
```

```
SUBAREA RUNOFF(CFS) =
                     0.40
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE 146.00 TO NODE 147.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 UPSTREAM ELEVATION(FEET) = 913.00 DOWNSTREAM ELEVATION(FEET) = 872.00
 STREET LENGTH(FEET) = 564.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.49
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
  HALFSTREET FLOOD WIDTH(FEET) = 7.44
  AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.20
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.43
 STREET FLOW TRAVEL TIME(MIN.) = 1.81 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.341
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 1.80 SUBAREA RUNOFF(CFS) = 6.16
 TOTAL AREA(ACRES) =
                     1.9
                              PEAK FLOW RATE(CFS) =
                                                      6.51
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.83
 FLOW VELOCITY(FEET/SEC.) = 5.99 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 147.00 = 614.00 FEET.
***********************
 FLOW PROCESS FROM NODE 147.00 TO NODE 144.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 867.00 DOWNSTREAM(FEET) = 864.00
 FLOW LENGTH(FEET) = 15.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 18.00
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.51
 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) =
                                       8.95
 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 144.00 = 629.00 FEET.
```

```
*******************
 FLOW PROCESS FROM NODE
                  144.00 TO NODE
                                144.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.95
 RAINFALL INTENSITY(INCH/HR) = 6.33
 TOTAL STREAM AREA(ACRES) = 1.90
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.51
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                Tc
                      INTENSITY
                                 AREA
 NUMBER
        (CFS)
                (MIN.) (INCH/HOUR)
                                 (ACRE)
                       5.007
    1
         79.35 12.89
                                  38.80
    2
         6.51
                        6.334
                8.95
                                   1.90
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                      INTENSITY
               (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
         69.22
                8.95
    1
                      6.334
         84.50
               12.89
                        5.007
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 84.50 Tc(MIN.) =
 TOTAL AREA(ACRES) = 40.7
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE
                                  144.00 = 2210.00 FEET.
***********************
 FLOW PROCESS FROM NODE
                  144.00 TO NODE
                               148.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 864.00 DOWNSTREAM(FEET) = 845.00
 FLOW LENGTH(FEET) = 199.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 25.94
 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 84.50
 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) =
                                   13.02
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 148.00 = 2409.00 FEET.
************************
 FLOW PROCESS FROM NODE 148.00 TO NODE 148.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.02
```

```
RAINFALL INTENSITY(INCH/HR) = 4.97
 TOTAL STREAM AREA(ACRES) = 40.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
********************
 FLOW PROCESS FROM NODE 149.00 TO NODE
                                     150.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 919.40
 DOWNSTREAM ELEVATION(FEET) = 918.90
ELEVATION DIFFERENCE(FEET) = 0.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.337
 SUBAREA RUNOFF(CFS) = 0.40
 TOTAL AREA(ACRES) =
                     0.10 TOTAL RUNOFF(CFS) =
***********************
 FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 UPSTREAM ELEVATION(FEET) = 916.00 DOWNSTREAM ELEVATION(FEET) = 896.00
 STREET LENGTH(FEET) = 370.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) = 8.57
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.86
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.45
 STREET FLOW TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.601
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 7.49
TOTAL AREA(ACRES) = 2.2 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                              PEAK FLOW RATE(CFS) = 7.84
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 11.37
```

```
FLOW VELOCITY(FEET/SEC.) = 5.56 DEPTH*VELOCITY(FT*FT/SEC.) =
                       149.00 TO NODE 151.00 = 420.00 FEET.
 LONGEST FLOWPATH FROM NODE
********************
 FLOW PROCESS FROM NODE 151.00 TO NODE 152.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 891.00 DOWNSTREAM(FEET) = 890.00
 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.24
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.84
 PIPE TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) =
                                     8.66
 LONGEST FLOWPATH FROM NODE 149.00 TO NODE
                                     152.00 =
*******************
 FLOW PROCESS FROM NODE
                    152.00 TO NODE
                                  153.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 890.00 DOWNSTREAM(FEET) = 850.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 730.00 CHANNEL SLOPE = 0.0548
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.967
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.94
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 10.54
 AVERAGE FLOW DEPTH(FEET) = 0.39 TRAVEL TIME(MIN.) = 1.15
 Tc(MIN.) =
           9.82
 SUBAREA AREA(ACRES) = 1.30
                            SUBAREA RUNOFF(CFS) = 4.19
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 TOTAL AREA(ACRES) = 3.5
                           PEAK FLOW RATE(CFS) = 11.28
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.42 FLOW VELOCITY(FEET/SEC.) = 10.96
 LONGEST FLOWPATH FROM NODE 149.00 TO NODE 153.00 =
                                              1250.00 FEET.
*******************
 FLOW PROCESS FROM NODE 153.00 TO NODE 148.00 IS CODE = 31
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 846.00 DOWNSTREAM(FEET) = 845.00
 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.86
 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 11.28
 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 10.06
```

LONGEST F	LOWPATH FRO	OM NODE	149.00 TO NODE	148.00 =	1350.00 FEET.
****	****	*****	* * * * * * * * * * * * * * * *	******	*****
FLOW PROC	ESS FROM NO	DDE 148	.00 TO NODE 1	48.00 IS CODE	= 1
	_		REAM FOR CONFLUE LUENCED STREAM V	_	
			======================================		=========
TOTAL NUM	BER OF STRE	EAMS = 2			
			DEPENDENT STREAM	1 2 ARE:	
	ONCENTRATIO				
	INTENSITY() EAM AREA(A(
			ENCE = 11.28	3	
** CONFLU	ENCE DATA '	· *			
			INTENSITY	AREA	
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)	
1	84.50	13.02	INTENSITY (INCH/HOUR) 4.975	40.70	
2	11.28	10.06	5.874	3.50	
	INTENSITY A	_	F CONCENTRATION 2 STREAMS.	RATIO	
** סהאג בו	LOW RATE TA	\DT.F **			
СПОБУМ	DIIMOFF	Ψα	INTENSITY		
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)		
1	82.84	10.06	(INCH/HOUR) 5.874 4.975		
2	94.05	13.02	4.975		
COMPILETED (CONFLUENCE	ESTIMATES	ARE AS FOLLOWS:		
			.05 Tc(MIN.) =		
TOTAL AREA	A(ACRES) =	44.	2		
LONGEST F	LOWPATH FRO	M NODE	101.00 TO NODE	148.00 =	2409.00 FEET.
****	*****	******	*****	******	*****
FLOW PROC	ESS FROM NO	DDE 148	.00 TO NODE 1	54.00 IS CODE	= 31
			TIME THRU SUBAR		
			PIPESIZE (NON-F	·	
) = 845.00 DC		
			MANNING'S N =		022700
DEPTH OF 1	FLOW IN 30	0.0 INCH P	IPE IS 20.6 INC	CHES	
	VELOCITY(E				
			= 30.00 NUM	MBER OF PIPES =	1
	(CFS) =		17 Tc(MIN.) =	- 13 10	
			101.00 TO NODE		2681.00 FEET.
*****	*****	*****	******	******	*****
FLOW PROC	ESS FROM NO	DDE 154	.00 TO NODE 1	54.00 IS CODE	= 1
>>>>DESI	GNATE INDE	PENDENT ST	REAM FOR CONFLUE	ENCE<<<<	
			=========	=========	==========
	BER OF STRE E VALUES US		DEPENDENT STREAM	1 1 ARE:	

```
TIME OF CONCENTRATION(MIN.) = 13.19
 RAINFALL INTENSITY(INCH/HR) = 4.93
 TOTAL STREAM AREA(ACRES) =
                          44.20
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  94.05
********************
 FLOW PROCESS FROM NODE 155.00 TO NODE 156.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .8700
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 98
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 884.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.464
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 9.222
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.80
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.80
**********************
 FLOW PROCESS FROM NODE 156.00 TO NODE 157.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 UPSTREAM ELEVATION(FEET) = 880.00 DOWNSTREAM ELEVATION(FEET) = 828.00
 STREET LENGTH(FEET) = 1237.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.01
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 14.18
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 5.64
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.31
 STREET FLOW TRAVEL TIME(MIN.) = 3.66 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 9.083
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.547
 SUBAREA AREA(ACRES) = 4.50 SUBAREA RUNOFF(CFS) = 22.07
TOTAL AREA(ACRES) = 4.6 PEAK FLOW RATE(CFS) = 22.86
```

```
END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.32
 FLOW VELOCITY(FEET/SEC.) = 6.58 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 155.00 TO NODE 157.00 = 1287.00 FEET.
FLOW PROCESS FROM NODE 157.00 TO NODE 154.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 822.00 DOWNSTREAM(FEET) = 821.00
 FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.77
 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 22.86
 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) =
                                      5.16
 LONGEST FLOWPATH FROM NODE 155.00 TO NODE
                                     154.00 =
                                               1317.00 FEET.
******************
 FLOW PROCESS FROM NODE
                    154.00 TO NODE
                                  154.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.16
 RAINFALL INTENSITY(INCH/HR) = 9.04
 TOTAL STREAM AREA(ACRES) = 4.60
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.86
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc
                         INTENSITY
                                    AREA
                (MIN.) (INCH/HOUR)
         (CFS) (MIN.)
94.05 13.19
 NUMBER
                                   (ACRE)
   1
                          4.933
                                     44.20
         22.86 5.16
                           9.038
                                       4 60
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
74.19 5.16 9.038
106.52 13.19 4.933
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 106.52 Tc(MIN.) = TOTAL AREA(ACRES) = 48.8
                                      13.19
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE
                                      154.00 =
                                              2681.00 FEET.
***********************
 FLOW PROCESS FROM NODE 154.00 TO NODE 159.00 IS CODE = 31
______
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 821.00 DOWNSTREAM(FEET) = 820.30
 FLOW LENGTH(FEET) = 64.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.27
 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 106.52
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 13.28
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE
                                    159.00 =
                                             2745.00 FEET.
**********************
 FLOW PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
*******************
 FLOW PROCESS FROM NODE 160.00 TO NODE 161.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .8700
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 98
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 874.00
 DOWNSTREAM ELEVATION(FEET) = 864.00
 ELEVATION DIFFERENCE(FEET) = 10.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.359
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 9.222
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.80
                 0.10 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
******************
 FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 864.00 DOWNSTREAM ELEVATION(FEET) = 830.00
 STREET LENGTH(FEET) = 1028.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.84
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
```

```
STREET FLOW DEPTH(FEET) = 0.35
  HALFSTREET FLOOD WIDTH(FEET) = 11.13
  AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.30
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.50
 STREET FLOW TRAVEL TIME(MIN.) = 3.98 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.837
 STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .8700
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 98
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870
 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 9.99
                    1.4
 TOTAL AREA(ACRES) =
                             PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 14.26
 FLOW VELOCITY(FEET/SEC.) = 5.00 DEPTH*VELOCITY(FT*FT/SEC.) = 2.06
 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 162.00 = 1078.00 FEET.
*******************
 FLOW PROCESS FROM NODE 162.00 TO NODE 159.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 824.00 DOWNSTREAM(FEET) = 820.30
 FLOW LENGTH(FEET) = 98.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.24
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.76
 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) =
                                     5.49
 LONGEST FLOWPATH FROM NODE 160.00 TO NODE
                                     159.00 =
***********************
                                  159.00 \text{ IS CODE} = 10
 FLOW PROCESS FROM NODE
                    159.00 TO NODE
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
***********************
 FLOW PROCESS FROM NODE 163.00 TO NODE 164.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 978.00
 DOWNSTREAM ELEVATION(FEET) =
                        976.00
 ELEVATION DIFFERENCE(FEET) =
                         2.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.415
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.853
 SUBAREA RUNOFF(CFS) = 0.24
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.24
```

```
************************
 FLOW PROCESS FROM NODE 164.00 TO NODE 165.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 976.00 DOWNSTREAM(FEET) = 910.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 433.00 CHANNEL SLOPE = 0.1524
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 20.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.677
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.62
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.72
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 4.19
 Tc(MIN.) = 10.61
 SUBAREA AREA(ACRES) = 1.60
                           SUBAREA RUNOFF(CFS) = 2.73
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 1.7
                             PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.12 FLOW VELOCITY(FEET/SEC.) = 2.00
 LONGEST FLOWPATH FROM NODE 163.00 TO NODE 165.00 =
                                              483.00 FEET.
***********************
 FLOW PROCESS FROM NODE 165.00 TO NODE 166.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 910.00 DOWNSTREAM(FEET) = 898.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE = 0.4800
 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 0.100
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50
 CHANNEL FLOW THRU SUBAREA(CFS) = 2.90
 FLOW VELOCITY(FEET/SEC.) = 12.16 FLOW DEPTH(FEET) = 0.08
 TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 10.64
 LONGEST FLOWPATH FROM NODE 163.00 TO NODE 166.00 = 508.00 FEET.
***********************
 FLOW PROCESS FROM NODE 166.00 TO NODE 167.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <>>>
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 898.00 DOWNSTREAM ELEVATION(FEET) = 876.00
 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
```

```
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                            5.89
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.32
  HALFSTREET FLOOD WIDTH(FEET) =
  AVERAGE FLOW VELOCITY (FEET/SEC.) = 5.49
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.77
 STREET FLOW TRAVEL TIME(MIN.) = 1.09 Tc(MIN.) = 11.73
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.319
 STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .8700
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 98
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.547
 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 6.02
 TOTAL AREA(ACRES) =
                   3.0
                           PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.52
 FLOW VELOCITY(FEET/SEC.) = 6.04 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 163.00 TO NODE 167.00 = 868.00 FEET.
********************
 FLOW PROCESS FROM NODE 167.00 TO NODE 168.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 870.00 DOWNSTREAM(FEET) = 863.00
 FLOW LENGTH(FEET) = 222.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.98
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 8.73
 PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) = 12.10
 LONGEST FLOWPATH FROM NODE 163.00 TO NODE 168.00 = 1090.00 FEET.
********************
 FLOW PROCESS FROM NODE 168.00 TO NODE 168.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<
______
***********************
 FLOW PROCESS FROM NODE
                    169.00 TO NODE
                                  170.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 934.00
 DOWNSTREAM ELEVATION(FEET) = 930.00
 ELEVATION DIFFERENCE(FEET) =
```

```
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.092
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 9.114
 SUBAREA RUNOFF(CFS) = 0.27
                   0.10 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*******************
 FLOW PROCESS FROM NODE 170.00 TO NODE 171.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 930.00 DOWNSTREAM(FEET) = 902.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 274.00 CHANNEL SLOPE = 0.1022
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 20.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.323
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.96
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.18
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 3.88
 Tc(MIN.) = 8.98
 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 1.33
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) =
                    0.8
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 1.45
 LONGEST FLOWPATH FROM NODE 169.00 TO NODE 171.00 = 324.00 FEET.
*******************
 FLOW PROCESS FROM NODE 171.00 TO NODE 172.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 900.00 DOWNSTREAM(FEET) = 898.80
 FLOW LENGTH(FEET) = 121.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.07
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.52
 PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) =
                                     9.47
 LONGEST FLOWPATH FROM NODE 169.00 TO NODE 172.00 = 445.00 FEET.
***********************
 FLOW PROCESS FROM NODE 172.00 TO NODE 172.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.47
 RAINFALL INTENSITY(INCH/HR) = 6.11
 TOTAL STREAM AREA(ACRES) =
```

```
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.52
********************
 FLOW PROCESS FROM NODE 173.00 TO NODE
                                  174.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                              50.00
 UPSTREAM ELEVATION(FEET) = 940.00
 DOWNSTREAM ELEVATION(FEET) = 938.00
ELEVATION DIFFERENCE(FEET) = 2.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.415
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.853
 SUBAREA RUNOFF(CFS) = 0.24
 TOTAL AREA(ACRES) =
                   0.10 TOTAL RUNOFF(CFS) =
***********************
 FLOW PROCESS FROM NODE 174.00 TO NODE 172.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 938.00 DOWNSTREAM(FEET) = 908.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 863.00 CHANNEL SLOPE = 0.0348
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.381
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.91
 AVERAGE FLOW DEPTH(FEET) = 0.21 TRAVEL TIME(MIN.) = 2.43
 Tc(MIN.) =
          8.85
 SUBAREA AREA(ACRES) = 2.60
                            SUBAREA RUNOFF(CFS) = 4.98
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 2.7
                              PEAK FLOW RATE(CFS) = 5.17
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 FLOW VELOCITY(FEET/SEC.) = 7.27
 LONGEST FLOWPATH FROM NODE 173.00 TO NODE 172.00 =
                                               913.00 FEET.
***********************
                    172.00 TO NODE
 FLOW PROCESS FROM NODE
                                  172.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.85
 RAINFALL INTENSITY(INCH/HR) = 6.38
 TOTAL STREAM AREA(ACRES) = 2.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
```

```
** CONFLUENCE DATA **
                       INTENSITY
 STREAM RUNOFF
                 Tc
                                  AREA
        (CFS) (MIN.) (INCH/HOUR)
1.52 9.47 6.108
                                 (ACRE)
 NUMBER
                                   0.80
    1
         5.17 8.85
    2
                         6.381
                                    2.70
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
6.59 8.85 6.381
6.46 9.47 6.108
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.59 Tc(MIN.) =
                                   8.85
 TOTAL AREA(ACRES) = 3.5
 LONGEST FLOWPATH FROM NODE 173.00 TO NODE 172.00 =
                                            913.00 FEET.
******************
 FLOW PROCESS FROM NODE 172.00 TO NODE 175.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 898.80 DOWNSTREAM(FEET) = 897.60
 FLOW LENGTH(FEET) = 112.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.19
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.59
 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) =
                                   9.15
 LONGEST FLOWPATH FROM NODE 173.00 TO NODE 175.00 =
                                           1025.00 FEET.
******************
 FLOW PROCESS FROM NODE
                   175.00 TO NODE
                                175.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.15
 RAINFALL INTENSITY(INCH/HR) = 6.24
 TOTAL STREAM AREA(ACRES) = 3.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.59
***********************
 FLOW PROCESS FROM NODE 176.00 TO NODE 177.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
```

50.00

```
UPSTREAM ELEVATION(FEET) = 930.70
 DOWNSTREAM ELEVATION(FEET) = 930.00
 ELEVATION DIFFERENCE(FEET) =
                           0.70
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.371
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.887
 SUBAREA RUNOFF(CFS) = 0.43
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.43
******************
 FLOW PROCESS FROM NODE 177.00 TO NODE 175.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 928.00 DOWNSTREAM ELEVATION(FEET) = 888.00
 STREET LENGTH(FEET) = 1200.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.11
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.31
   HALFSTREET FLOOD WIDTH(FEET) = 8.97
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.85
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.18
 STREET FLOW TRAVEL TIME(MIN.) = 5.19 Tc(MIN.) = 11.56
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.371
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 4.50 SUBAREA RUNOFF(CFS) = 13.05
TOTAL AREA(ACRES) = 4.6 PEAK FLOW RATE(CFS) =
                             PEAK FLOW RATE(CFS) = 13.34
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.68
 FLOW VELOCITY(FEET/SEC.) = 4.50 DEPTH*VELOCITY(FT*FT/SEC.) = 1.62
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 175.00 = 1250.00 FEET.
***********************
 FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.56
 RAINFALL INTENSITY(INCH/HR) = 5.37
```

TOTAL STREAM AREA(ACRES) = 4.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.34 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 6.59 9.15 6.245 3.50
2 13.34 11.56 5.371 4.60 3.50 4.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY (CFS) (MIN.) (INCH/HOUR) 17.15 9.15 6.245 NUMBER 17.159.156.24519.0111.565.371 1 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 19.01 Tc(MIN.) = 11.56 TOTAL AREA(ACRES) = 8.1 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 175.00 = 1250.00 FEET. ******************** FLOW PROCESS FROM NODE 175.00 TO NODE 178.00 IS CODE = 62 ______ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA< >>>>(STREET TABLE SECTION # 1 USED) << << ______ UPSTREAM ELEVATION(FEET) = 888.00 DOWNSTREAM ELEVATION(FEET) = 870.00 STREET LENGTH(FEET) = 395.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 22.58 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.93 AVERAGE FLOW VELOCITY (FEET/SEC.) = 6.78 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.29 STREET FLOW TRAVEL TIME(MIN.) = 0.97 Tc(MIN.) = 12.53 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.098 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400 SOIL CLASSIFICATION IS "C" S.C.S. CURVE NUMBER (AMC II) = 84 AREA-AVERAGE RUNOFF COEFFICIENT = 0.461 SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) = 7.16
TOTAL AREA(ACRES) = 10.7 PEAK FLOW RATE(CFS) = 25.18

```
END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.50 HALFSTREET FLOOD WIDTH(FEET) = 18.73
 FLOW VELOCITY(FEET/SEC.) = 6.96 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE
                                   178.00 = 1645.00 FEET.
********************
 FLOW PROCESS FROM NODE
                   178.00 TO NODE 179.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 865.00 DOWNSTREAM(FEET) = 864.50
 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.31
 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 25.18
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 12.63
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE
                                   179.00 =
                                           1695.00 FEET.
******************
 FLOW PROCESS FROM NODE
                   179.00 TO NODE
                                179.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.63
 RAINFALL INTENSITY(INCH/HR) = 5.07
 TOTAL STREAM AREA(ACRES) = 10.70
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 25.18
******************
 FLOW PROCESS FROM NODE 180.00 TO NODE 181.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
 UPSTREAM ELEVATION(FEET) = 931.00
 DOWNSTREAM ELEVATION(FEET) = 930.50
ELEVATION DIFFERENCE(FEET) = 0.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.128
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.337
 SUBAREA RUNOFF(CFS) = 0.40
 TOTAL AREA(ACRES) =
                  0.10 TOTAL RUNOFF(CFS) = 0.40
************************
 FLOW PROCESS FROM NODE 181.00 TO NODE 179.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 930.00 DOWNSTREAM ELEVATION(FEET) = 870.00
 STREET LENGTH(FEET) = 1399.00 CURB HEIGHT(INCHES) = 6.0
```

```
STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.49
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.35
   HALFSTREET FLOOD WIDTH(FEET) =
                                10.98
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.91
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.70
 STREET FLOW TRAVEL TIME(MIN.) = 4.75 Tc(MIN.) = 11.88
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.277
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 4.20 SUBAREA RUNOFF(CFS) = 11.97
 TOTAL AREA(ACRES) =
                       4.3
                               PEAK FLOW RATE(CFS) = 12.25
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 14.26
 FLOW VELOCITY(FEET/SEC.) = 5.70 DEPTH*VELOCITY(FT*FT/SEC.) = 2.34
 LONGEST FLOWPATH FROM NODE 180.00 TO NODE 179.00 = 1449.00 FEET.
*******************
 FLOW PROCESS FROM NODE 179.00 TO NODE
                                       179.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.88
 RAINFALL INTENSITY(INCH/HR) = 5.28
 TOTAL STREAM AREA(ACRES) = 4.30
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 12.25
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 25.18 12.63 5.072
                                         AREA
                                         (ACRE)
                                          10.70
           12.25 11.88
                              5.277
                                           4.30
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
```

** PEAK FLOW RATE TABLE **

NUMBER

1

STREAM RUNOFF TC INTENSITY

36.45 11.88

(CFS) (MIN.) (INCH/HOUR)

81

```
2 36.95 12.63 5.072
```

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 36.95 Tc(MIN.) = 12.63 TOTAL AREA(ACRES) = 15.0 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 179.00 = 1695.00 FEET. ****************** FLOW PROCESS FROM NODE 179.00 TO NODE 168.00 IS CODE = 31 ______ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < < ______ ELEVATION DATA: UPSTREAM(FEET) = 864.50 DOWNSTREAM(FEET) = 863.00 FLOW LENGTH(FEET) = 0.36 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 87.45 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 36.95PIPE TRAVEL TIME(MIN.) = 0.00 Tc(MIN.) = 12.63 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 168.00 = 1695.36 FEET. ******************** FLOW PROCESS FROM NODE 168.00 TO NODE 168.00 IS CODE = 11 ______ >>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY< ______ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 36.95 12.63 5.072 15.00 5.072 15.00 1 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 168.00 = 1695.36 FEET. ** MEMORY BANK # 3 CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)

1 8.73 12.10 5.214 3.00

LONGEST FLOWPATH FROM NODE 163.00 TO NODE 168.00 = 1090.00 FEET. ** PEAK FLOW RATE TABLE ** INTENSITY STREAM RUNOFF Tc (CFS) (MIN.) (INCH/HOUR) 44.14 12.10 5.214 45.44 12.63 5.072 NUMBER 1 2 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 45.44 Tc(MIN.) = 12.63TOTAL AREA(ACRES) = 18.0 ***************** FLOW PROCESS FROM NODE 168.00 TO NODE 168.00 IS CODE = 12 ______ >>>>CLEAR MEMORY BANK # 3 <<<<< ______

```
************************
 FLOW PROCESS FROM NODE 168.00 TO NODE 182.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 863.00 DOWNSTREAM(FEET) = 852.00
 FLOW LENGTH(FEET) = 748.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.95
 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 45.44
 PIPE TRAVEL TIME(MIN.) = 1.14 Tc(MIN.) = 13.77
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 182.00 =
                                          2443.36 FEET.
***********************
                  182.00 TO NODE
 FLOW PROCESS FROM NODE
                               182.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.77
 RAINFALL INTENSITY(INCH/HR) = 4.80
 TOTAL STREAM AREA(ACRES) = 18.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
***********************
 FLOW PROCESS FROM NODE 183.00 TO NODE
                               184.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 897.30
 DOWNSTREAM ELEVATION(FEET) = 896.80
ELEVATION DIFFERENCE(FEET) = 0.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                             7.128
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.337
 SUBAREA RUNOFF(CFS) =
                  0.40
 TOTAL AREA(ACRES) =
                 0.10 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 184.00 TO NODE 185.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 896.80 DOWNSTREAM ELEVATION(FEET) = 858.00
 STREET LENGTH(FEET) = 687.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.26
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.40
  HALFSTREET FLOOD WIDTH(FEET) = 13.48
  AVERAGE FLOW VELOCITY (FEET/SEC.) = 6.34
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.51
 STREET FLOW TRAVEL TIME(MIN.) = 1.81 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.342
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 6.90 SUBAREA RUNOFF(CFS) = 23.63
TOTAL AREA(ACRES) = 7.0 PEAK FLOW RATE(CFS) =
                              PEAK FLOW RATE(CFS) = 23.97
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.62
 FLOW VELOCITY(FEET/SEC.) = 7.44 DEPTH*VELOCITY(FT*FT/SEC.) = 3.56
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 687.0 FT WITH ELEVATION-DROP = 38.8 FT, IS 31.7 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 185.00
 LONGEST FLOWPATH FROM NODE 183.00 TO NODE 185.00 = 737.00 FEET.
************************
 FLOW PROCESS FROM NODE 185.00 TO NODE 182.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 852.50 DOWNSTREAM(FEET) = 852.00
 FLOW LENGTH(FEET) = 36.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.16
 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 23.97
 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) =
                                        9.00
 LONGEST FLOWPATH FROM NODE 183.00 TO NODE
                                       182.00 =
*******************
 FLOW PROCESS FROM NODE 182.00 TO NODE 182.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.00
 RAINFALL INTENSITY(INCH/HR) = 6.31
 TOTAL STREAM AREA(ACRES) = 7.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.97
*******************
```

```
FLOW PROCESS FROM NODE 186.00 TO NODE 187.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 870.00
 DOWNSTREAM ELEVATION(FEET) = 869.50
 ELEVATION DIFFERENCE(FEET) = 0.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.128
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.337
 SUBAREA RUNOFF(CFS) = 0.40
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.40
********************
 FLOW PROCESS FROM NODE 187.00 TO NODE 188.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 UPSTREAM ELEVATION(FEET) = 869.50 DOWNSTREAM ELEVATION(FEET) = 858.00
 STREET LENGTH(FEET) = 750.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.50
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.34
   HALFSTREET FLOOD WIDTH(FEET) = 10.51
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.86
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.96
 STREET FLOW TRAVEL TIME(MIN.) = 4.37 Tc(MIN.) = 11.50
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.389
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 6.11
 TOTAL AREA(ACRES) =
                      2.2
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.48
 FLOW VELOCITY(FEET/SEC.) = 3.31 DEPTH*VELOCITY(FT*FT/SEC.) = 1.31
 LONGEST FLOWPATH FROM NODE 186.00 TO NODE 188.00 = 800.00 FEET.
************************
 FLOW PROCESS FROM NODE 188.00 TO NODE 182.00 IS CODE = 31
```

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 852.50 DOWNSTREAM(FEET) = 852.00
 FLOW LENGTH(FEET) = 36.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.79
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.40
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 11.59
 LONGEST FLOWPATH FROM NODE 186.00 TO NODE
                                    182.00 =
******************
 FLOW PROCESS FROM NODE 182.00 TO NODE 182.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.59
 RAINFALL INTENSITY(INCH/HR) =
                       5.36
 TOTAL STREAM AREA(ACRES) = 2.20
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              6.40
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                 Tc
                        INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
 NUMBER
                                   (ACRE)
         45.44
    1
                13.77
                         4.797
                                     18.00
         23.97
    2
                9.00
                          6.312
                                     7.00
          6.40
               11.59
                         5.363
                                     2.20
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
 NUMBER
               (MIN.) (INCH/HOUR)
         (CFS)
    1
         58.64
                9.00
                       6.312
    2.
         65.00
                11.59
                         5.363
    3
          69.39
                13.77
                         4.797
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 69.39 Tc(MIN.) = 13.77
 TOTAL AREA(ACRES) = 27.2
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 182.00 = 2443.36 FEET.
************************
 FLOW PROCESS FROM NODE 182.00 TO NODE 189.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 852.00 DOWNSTREAM(FEET) = 848.50
 FLOW LENGTH(FEET) = 46.00 MANNING'S N = 0.013
```

```
DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 22.91
 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 69.39
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 13.80
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 189.00 = 2489.36 FEET.
******************
 FLOW PROCESS FROM NODE 189.00 TO NODE 189.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.80
 RAINFALL INTENSITY(INCH/HR) = 4.79
 TOTAL STREAM AREA(ACRES) = 27.20
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              69.39
***********************
 FLOW PROCESS FROM NODE 190.00 TO NODE 191.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 897.30
 DOWNSTREAM ELEVATION(FEET) = 897.00
ELEVATION DIFFERENCE(FEET) = 0.30
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.451
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.573
 SUBAREA RUNOFF(CFS) = 0.35
                 0.10 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
******************
 FLOW PROCESS FROM NODE 191.00 TO NODE 192.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 UPSTREAM ELEVATION(FEET) = 897.00 DOWNSTREAM ELEVATION(FEET) = 854.00
 STREET LENGTH(FEET) = 656.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.02
```

STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:

```
STREET FLOW DEPTH(FEET) = 0.24
   HALFSTREET FLOOD WIDTH(FEET) = 5.78
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.46
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.08
 STREET FLOW TRAVEL TIME(MIN.) = 2.45 Tc(MIN.) = 10.90
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.578
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 3.31
                     1.2
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.71
 FLOW VELOCITY(FEET/SEC.) = 5.07 DEPTH*VELOCITY(FT*FT/SEC.) = 1.42
 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 192.00 = 706.00 FEET.
*******************
 FLOW PROCESS FROM NODE 192.00 TO NODE
                                    189.00 \text{ IS CODE} = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 849.00 DOWNSTREAM(FEET) = 848.50
 FLOW LENGTH(FEET) = 42.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.53
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.61
 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 11.03
 LONGEST FLOWPATH FROM NODE 190.00 TO NODE
                                       189.00 =
***********************
                     189.00 TO NODE
 FLOW PROCESS FROM NODE
                                    189.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.03
 RAINFALL INTENSITY(INCH/HR) = 5.54
 TOTAL STREAM AREA(ACRES) = 1.20
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.61
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
          (CFS)
                  (MIN.) (INCH/HOUR)
 NUMBER
                                     (ACRE)
          69.39 13.80 4.790
3.61 11.03 5.537
   1
                                       27.20
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
```

^{**} PEAK FLOW RATE TABLE **

```
STREAM RUNOFF TC
                       INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
 NUMBER
         63.65 11.03
                       5.537
    1
    2
          72.52
                13.80
                         4.790
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 72.52 Tc(MIN.) = 13.80 TOTAL AREA(ACRES) = 28.4
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 189.00 = 2489.36 FEET.
********************
 FLOW PROCESS FROM NODE 189.00 TO NODE 159.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 848.50 DOWNSTREAM(FEET) = 820.30
 FLOW LENGTH(FEET) = 464.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 21.48
 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 72.52
 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 14.16
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE
                                    159.00 = 2953.36 FEET.
*******************
 FLOW PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                 AREA
 NUMBER
         (CFS)
                (MIN.) (INCH/HOUR) (ACRE)
         72.52 14.16
   1
                       4.711
                                 28.40
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 159.00 = 2953.36 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA
        (CFS) (MIN.) (INCH/HOUR) (ACRE)
106.52 13.28 4.912 48.80
 NUMBER
   1
                       4.912 48.80
                                    159.00 = 2745.00 FEET.
 LONGEST FLOWPATH FROM NODE 101.00 TO NODE
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
174.50 13.28 4.912
 NUMBER
               13.28
    1
        174.69
                14.16
                           4.711
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 174.69 Tc(MIN.) = 14.16
                    77.2
 TOTAL AREA(ACRES) =
***********************
 FLOW PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
```

```
** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                             AREA
        (CFS) (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
        174.69 14.16
   1
                     4.711
                             77.20
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 159.00 = 2953.36 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
       RUNOFF
               Tc
                    INTENSITY
                             AREA
              (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
        (CFS)
        10.76
              5.49
                              1.40
   1
                     8.686
 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 159.00 = 1176.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                    INTENSITY
             (MIN.) (INCH/HOUR)
 NUMBER
       (CFS)
              5.49
14.16
   1
       78.43
                      8.686
   2
       180.53
                       4.711
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 180.53 Tc(MIN.) = 14.16
                 78.6
 TOTAL AREA(ACRES) =
*******************
                 159.00 TO NODE 159.00 IS CODE = 12
 FLOW PROCESS FROM NODE
______
 >>>>CLEAR MEMORY BANK # 1 <<<<
______
*******************
 FLOW PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
******************
 FLOW PROCESS FROM NODE
                 159.00 TO NODE
                             193.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 820.30 DOWNSTREAM(FEET) = 807.00
 FLOW LENGTH(FEET) = 370.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 34.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 21.44
 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 180.53
 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 14.45
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE
                               193.00 =
                                       3323.36 FEET.
********************
 FLOW PROCESS FROM NODE 193.00 TO NODE 193.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
```

```
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 14.45
 RAINFALL INTENSITY(INCH/HR) = 4.65
 TOTAL STREAM AREA(ACRES) = 78.60
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
***********************
                      194.00 TO NODE
                                      195.00 IS CODE = 21
 FLOW PROCESS FROM NODE
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .8700
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 98
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 872.00
 DOWNSTREAM ELEVATION(FEET) = 866.00
 ELEVATION DIFFERENCE(FEET) =
                             6.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                   1.359
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 9.222
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.80
 TOTAL AREA(ACRES) =
                      0.10 TOTAL RUNOFF(CFS) = 0.80
***********************
 FLOW PROCESS FROM NODE 195.00 TO NODE 196.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 UPSTREAM ELEVATION(FEET) = 866.00 DOWNSTREAM ELEVATION(FEET) = 813.00
 STREET LENGTH(FEET) = 805.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.21
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.27
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.92
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.73 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 9.222
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .8700
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 98
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870
```

```
SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 4.81
 TOTAL AREA(ACRES) = 0.7
                           PEAK FLOW RATE(CFS) =
                                                  5.62
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.44
 FLOW VELOCITY(FEET/SEC.) = 5.57 DEPTH*VELOCITY(FT*FT/SEC.) = 1.75
 LONGEST FLOWPATH FROM NODE 194.00 TO NODE 196.00 = 855.00 FEET.
***********************
 FLOW PROCESS FROM NODE 196.00 TO NODE
                                 193.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 808.00 DOWNSTREAM(FEET) = 807.00
 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.50
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.62
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) =
                                    4.12
 LONGEST FLOWPATH FROM NODE 194.00 TO NODE 193.00 = 875.00 FEET.
*******************
 FLOW PROCESS FROM NODE 193.00 TO NODE 193.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 4.12
 RAINFALL INTENSITY(INCH/HR) = 9.22
 TOTAL STREAM AREA(ACRES) = 0.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
******************
 FLOW PROCESS FROM NODE 197.00 TO NODE
                                 198.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .8700
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 98
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 854.00
 DOWNSTREAM ELEVATION(FEET) = 838.00
ELEVATION DIFFERENCE(FEET) = 16.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.359
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 9.222
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.80
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.80
************************
 FLOW PROCESS FROM NODE 198.00 TO NODE
                                 199.00 \text{ IS CODE} = 62
```

```
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 UPSTREAM ELEVATION(FEET) = 838.00 DOWNSTREAM ELEVATION(FEET) = 813.00
 STREET LENGTH(FEET) = 553.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                 3 21
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.29
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.26
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.22
 STREET FLOW TRAVEL TIME(MIN.) = 2.17 Tc(MIN.) = 3.52
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 9.222
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .8700
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 98
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870
                            SUBAREA RUNOFF(CFS) = 4.81
 SUBAREA AREA(ACRES) = 0.60
                      0.7
 TOTAL AREA(ACRES) =
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.20
 FLOW VELOCITY(FEET/SEC.) = 4.85 DEPTH*VELOCITY(FT*FT/SEC.) = 1.60
 LONGEST FLOWPATH FROM NODE 197.00 TO NODE 199.00 =
                                                   603.00 FEET.
******************
                                     193.00 IS CODE = 31
 FLOW PROCESS FROM NODE
                      199.00 TO NODE
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 808.00 DOWNSTREAM(FEET) = 807.00
 FLOW LENGTH(FEET) = 15.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.65
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.62
 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) =
                                         3.55
 LONGEST FLOWPATH FROM NODE 197.00 TO NODE 193.00 =
***********************
                      193.00 TO NODE
                                     193.00 IS CODE = 1
 FLOW PROCESS FROM NODE
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) =
 RAINFALL INTENSITY(INCH/HR) = 9.22
 TOTAL STREAM AREA(ACRES) = 0.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                5.62
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA

NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)

1 180.53 14.45 4.650 78.60
           1.45
1.02 4.12
5.62 2 7
                                     78.60
          5.62
                          9.222
    2
                                      0.70
                 3.55
                          9.222
                                      0.70
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
54.75 3.55 9.222
 NUMBER
    1
         62.68
                  4.12
                          9.222
         186.19 14.45
                          4.650
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 186.19 Tc(MIN.) = 14.45
 TOTAL AREA(ACRES) = 80.0
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 193.00 = 3323.36 FEET.
******************
 FLOW PROCESS FROM NODE 193.00 TO NODE 1100.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 807.00 DOWNSTREAM(FEET) = 788.00
 FLOW LENGTH(FEET) = 1113.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 37.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 16.67
 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 186.19
 PIPE TRAVEL TIME(MIN.) = 1.11 Tc(MIN.) = 15.56
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 1100.00 = 4436.36 FEET.
***********************
 FLOW PROCESS FROM NODE 1100.00 TO NODE 1101.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 788.00 DOWNSTREAM(FEET) = 784.00
 FLOW LENGTH(FEET) = 53.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 29.20
```

```
ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 186.19
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 15.60
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 1101.00 =
                                              4489.36 FEET.
******************
 FLOW PROCESS FROM NODE 1101.00 TO NODE 1102.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 784.00 DOWNSTREAM(FEET) = 782.20
 CHANNEL LENGTH THRU SUBAREA(FEET) = 300.00 CHANNEL SLOPE = 0.0060
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 30.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.151
 LAWNS, GOLF COURSES, ETC. GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 74
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 187.94
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.05
 AVERAGE FLOW DEPTH(FEET) = 1.28 TRAVEL TIME(MIN.) = 1.64
 Tc(MIN.) = 17.24
 SUBAREA AREA(ACRES) = 2.80 SUBAREA RUNOFF(CFS) = 3.49
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.481
 TOTAL AREA(ACRES) =
                    82.8
                              PEAK FLOW RATE(CFS) = 186.19
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.27 FLOW VELOCITY(FEET/SEC.) = 3.05
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 1102.00 = 4789.36 FEET.
*******************
 FLOW PROCESS FROM NODE 1102.00 TO NODE 1103.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 777.00 DOWNSTREAM(FEET) = 762.00
 FLOW LENGTH(FEET) = 74.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 42.47
 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 186.19
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 17.27
 LONGEST FLOWPATH FROM NODE 176.00 TO NODE 1103.00 = 4863.36 FEET.
******************
 FLOW PROCESS FROM NODE 1103.00 TO NODE 1104.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 762.00 DOWNSTREAM(FEET) = 730.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 156.00 CHANNEL SLOPE = 0.2051
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 2.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 186.19
```

```
FLOW VELOCITY(FEET/SEC.) = 8.75 FLOW DEPTH(FEET) = 1.04
 TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) = 17.56
 LONGEST FLOWPATH FROM NODE
                     176.00 TO NODE 1104.00 =
                                           5019.36 FEET.
********************
 FLOW PROCESS FROM NODE 1104.00 TO NODE 1104.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
**********************
 FLOW PROCESS FROM NODE 1106.00 TO NODE 1107.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1042.00
 DOWNSTREAM ELEVATION(FEET) = 1038.00
 ELEVATION DIFFERENCE(FEET) = 4.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.927
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.264
 SUBAREA RUNOFF(CFS) = 0.25
 TOTAL AREA(ACRES) =
                  0.10 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 1107.00 TO NODE 1108.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1038.00 DOWNSTREAM(FEET) = 840.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2420.00 CHANNEL SLOPE = 0.0818
 CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 3.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.449
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.22
 AVERAGE FLOW DEPTH(FEET) = 0.50 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 15.48
 SUBAREA AREA(ACRES) = 46.40
                          SUBAREA RUNOFF(CFS) = 61.92
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 46.5
                           PEAK FLOW RATE(CFS) = 62.06
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.71 FLOW VELOCITY(FEET/SEC.) = 5.29
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1108.00 = 2480.00 FEET.
**********************
 FLOW PROCESS FROM NODE 1108.00 TO NODE 1109.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 840.00 DOWNSTREAM(FEET) = 836.00
 FLOW LENGTH(FEET) = 145.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.99
 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  62.06
 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 15.64
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1109.00 =
*******************
 FLOW PROCESS FROM NODE 1109.00 TO NODE 1110.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 836.00 DOWNSTREAM(FEET) = 820.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 599.00 CHANNEL SLOPE = 0.0267
 CHANNEL BASE(FEET) = 24.00 "Z" FACTOR = 2.500
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 3.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.935
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.24
 AVERAGE FLOW DEPTH(FEET) = 0.78 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 18.72
 SUBAREA AREA(ACRES) = 5.30
                            SUBAREA RUNOFF(CFS) = 6.26
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 51.8
                              PEAK FLOW RATE(CFS) = 62.06
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.75 FLOW VELOCITY(FEET/SEC.) = 3.19
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1110.00 =
                                              3224.00 FEET.
FLOW PROCESS FROM NODE 1110.00 TO NODE 1111.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 820.00 DOWNSTREAM(FEET) = 810.00
 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 23.29
 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 62.06
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 18.81
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1111.00 =
                                              3344.00 FEET.
******************
 FLOW PROCESS FROM NODE 1111.00 TO NODE 1112.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
```

```
______
 ELEVATION DATA: UPSTREAM(FEET) = 810.00 DOWNSTREAM(FEET) = 787.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 381.00 CHANNEL SLOPE = 0.0604
 CHANNEL BASE(FEET) = 24.00 "Z" FACTOR = 2.500
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 3.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.731
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.16
 AVERAGE FLOW DEPTH(FEET) = 0.60 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 20.33
 SUBAREA AREA(ACRES) = 2.90
                            SUBAREA RUNOFF(CFS) = 3.25
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 54.7
                             PEAK FLOW RATE(CFS) = 62.06
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.59 FLOW VELOCITY(FEET/SEC.) = 4.11
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1112.00 = 3725.00 FEET.
*******************
 FLOW PROCESS FROM NODE 1112.00 TO NODE 1112.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <><
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 20.33
 RAINFALL INTENSITY(INCH/HR) = 3.73
 TOTAL STREAM AREA(ACRES) = 54.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 62.06
*******************
 FLOW PROCESS FROM NODE 1113.00 TO NODE 1114.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 940.00
 DOWNSTREAM ELEVATION(FEET) = 939.00
 ELEVATION DIFFERENCE(FEET) = 1.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.082
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.765
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) =
                   0.10 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 1114.00 TO NODE 1115.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) =
                           939.00 DOWNSTREAM(FEET) =
```

```
CHANNEL LENGTH THRU SUBAREA(FEET) = 1333.00 CHANNEL SLOPE = 0.1013
 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 3.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.068
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.59
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.29
 AVERAGE FLOW DEPTH(FEET) = 0.16 TRAVEL TIME(MIN.) = 9.70
 Tc(MIN.) = 17.79
 SUBAREA AREA(ACRES) = 11.40
                              SUBAREA RUNOFF(CFS) = 13.91
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 11.5
                              PEAK FLOW RATE(CFS) = 14.03
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) = 2.93
 LONGEST FLOWPATH FROM NODE 1113.00 TO NODE 1115.00 =
                                                 1383.00 FEET.
*******************
 FLOW PROCESS FROM NODE 1115.00 TO NODE 1112.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 804.00 DOWNSTREAM(FEET) = 787.00
 FLOW LENGTH(FEET) = 143.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 18.46
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 14.03
 PIPE TRAVEL TIME(MIN.) = 0.13
                             Tc(MIN.) = 17.91
 LONGEST FLOWPATH FROM NODE 1113.00 TO NODE 1112.00 =
                                                 1526.00 FEET.
******************
 FLOW PROCESS FROM NODE 1112.00 TO NODE 1112.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 17.91
 RAINFALL INTENSITY(INCH/HR) = 4.05
 TOTAL STREAM AREA(ACRES) = 11.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.03
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                    Tc
                          INTENSITY
                                       AREA
                  (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
           (CFS) (MIN.)
62.06 20.33
                                      (ACRE)
                           3.731
    1
                                        54.70
          14.03 17.91
                            4.049
                                        11.50
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
```

CONFLUENCE FORMULA USED FOR 2 STREAMS.

99

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
         (CFS) (MIN.)
68.71 17.91
                (MIN.) (INCH/HOUR)
 NUMBER
    1
                        4.049
         74.99 20.33
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 74.99 Tc(MIN.) = 20.33
 TOTAL AREA(ACRES) =
                   66.2
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1112.00 =
                                             3725.00 FEET.
FLOW PROCESS FROM NODE 1112.00 TO NODE 1116.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 787.00 DOWNSTREAM(FEET) = 766.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 748.00 CHANNEL SLOPE = 0.0281
 CHANNEL BASE(FEET) = 24.00 "Z" FACTOR = 2.500
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 4.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.362
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.50
 AVERAGE FLOW DEPTH(FEET) = 0.84 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 23.90
 SUBAREA AREA(ACRES) = 4.20
                           SUBAREA RUNOFF(CFS) = 4.24
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 70.4
                             PEAK FLOW RATE(CFS) = 74.99
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.83 FLOW VELOCITY(FEET/SEC.) = 3.47
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1116.00 =
                                             4473.00 FEET.
FLOW PROCESS FROM NODE 1116.00 TO NODE 1116.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
*******************
 FLOW PROCESS FROM NODE 1117.00 TO NODE 1118.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 938.00
 DOWNSTREAM ELEVATION(FEET) = 934.00
ELEVATION DIFFERENCE(FEET) = 4.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 9.114
```

```
SUBAREA RUNOFF(CFS) =
                    0.27
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE 1118.00 TO NODE 1119.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 934.00 DOWNSTREAM(FEET) = 804.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 900.00 CHANNEL SLOPE = 0.1444
 CHANNEL BASE(FEET) = 18.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.632
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.66
 AVERAGE FLOW DEPTH(FEET) = 0.16 TRAVEL TIME(MIN.) = 5.65
 Tc(MIN.) = 10.74
 SUBAREA AREA(ACRES) = 8.20
                            SUBAREA RUNOFF(CFS) = 13.86
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 8.3
                              PEAK FLOW RATE(CFS) = 14.02
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 3.39
 LONGEST FLOWPATH FROM NODE 1117.00 TO NODE 1119.00 =
                                              950.00 FEET.
*************************
 FLOW PROCESS FROM NODE 1119.00 TO NODE 1120.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 804.00 DOWNSTREAM(FEET) = 796.00
 FLOW LENGTH(FEET) = 82.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 17.16
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 14.02
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 10.82
 LONGEST FLOWPATH FROM NODE 1117.00 TO NODE 1120.00 =
                                             1032.00 FEET.
**********************
 FLOW PROCESS FROM NODE 1120.00 TO NODE 1116.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 796.00 DOWNSTREAM(FEET) = 766.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 385.00 CHANNEL SLOPE = 0.0779
 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.902
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
```

```
SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.28
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.57
 AVERAGE FLOW DEPTH(FEET) = 0.23 TRAVEL TIME(MIN.) = 2.50
 Tc(MIN.) =
          13.32
 SUBAREA AREA(ACRES) = 1.70
                           SUBAREA RUNOFF(CFS) = 2.50
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 10.0
                           PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) = 2.56
 LONGEST FLOWPATH FROM NODE 1117.00 TO NODE 1116.00 = 1417.00 FEET.
******************
 FLOW PROCESS FROM NODE 1116.00 TO NODE 1116.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<
______
******************
 FLOW PROCESS FROM NODE 1121.00 TO NODE 1122.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 916.00
 DOWNSTREAM ELEVATION(FEET) = 914.00
ELEVATION DIFFERENCE(FEET) = 2.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.257
 SUBAREA RUNOFF(CFS) = 2.97
 TOTAL AREA(ACRES) =
                  1.00 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 1122.00 TO NODE 1123.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 914.00 DOWNSTREAM ELEVATION(FEET) = 825.00
 STREET LENGTH(FEET) = 1736.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 17.98

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
  STREET FLOW DEPTH(FEET) = 0.45
  HALFSTREET FLOOD WIDTH(FEET) = 16.05
  AVERAGE FLOW VELOCITY (FEET/SEC.) = 6.67
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.98
 STREET FLOW TRAVEL TIME(MIN.) = 4.34 Tc(MIN.) = 10.27
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.796
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.523
 SUBAREA AREA(ACRES) = 9.60 SUBAREA RUNOFF(CFS) = 30.05
                   10.6
 TOTAL AREA(ACRES) =
                            PEAK FLOW RATE(CFS) = 32.13
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 21.55
 FLOW VELOCITY(FEET/SEC.) = 7.68 DEPTH*VELOCITY(FT*FT/SEC.) = 4.06
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
      AND L = 1736.0 FT WITH ELEVATION-DROP = 89.0 FT, IS 43.2 CFS,
      WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 1123.00
 LONGEST FLOWPATH FROM NODE 1121.00 TO NODE 1123.00 = 1786.00 FEET.
***********************
 FLOW PROCESS FROM NODE 1123.00 TO NODE 1124.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 820.00 DOWNSTREAM(FEET) = 819.60
 FLOW LENGTH(FEET) = 35.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 9.35
 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 32.13
 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 10.33
 LONGEST FLOWPATH FROM NODE 1121.00 TO NODE 1124.00 =
                                             1821.00 FEET.
FLOW PROCESS FROM NODE 1124.00 TO NODE 1124.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.33
 RAINFALL INTENSITY(INCH/HR) = 5.77
 TOTAL STREAM AREA(ACRES) = 10.60
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 32.13
************************
 FLOW PROCESS FROM NODE 1125.00 TO NODE 1126.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
```

```
INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
 UPSTREAM ELEVATION(FEET) = 930.30
 DOWNSTREAM ELEVATION(FEET) = 929.20
 ELEVATION DIFFERENCE(FEET) = 1.10
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.480
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.692
 SUBAREA RUNOFF(CFS) = 0.47
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.47
********************
 FLOW PROCESS FROM NODE 1126.00 TO NODE 1124.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 UPSTREAM ELEVATION(FEET) = 929.20 DOWNSTREAM ELEVATION(FEET) = 825.00
 STREET LENGTH(FEET) = 1940.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 17.52
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.44
   HALFSTREET FLOOD WIDTH(FEET) = 15.74
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 6.75
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.98
 STREET FLOW TRAVEL TIME(MIN.) = 4.79 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.796
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 10.60 SUBAREA RUNOFF(CFS) = 33.18
 TOTAL AREA(ACRES) =
                     10.7
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 21.86
 FLOW VELOCITY(FEET/SEC.) = 7.87 DEPTH*VELOCITY(FT*FT/SEC.) = 4.19
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1940.0 FT WITH ELEVATION-DROP = 104.2 FT, IS 48.2 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 1124.00
 LONGEST FLOWPATH FROM NODE 1125.00 TO NODE 1124.00 =
                                                 1990.00 FEET.
******************
 FLOW PROCESS FROM NODE 1124.00 TO NODE 1124.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE << < <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
```

TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.27 RAINFALL INTENSITY(INCH/HR) = 5.80TOTAL STREAM AREA(ACRES) = 10.70 PEAK FLOW RATE (CFS) AT CONFLUENCE = 33.49 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) AREA (ACRE) 32.13 10.33 33.49 10.27 1 5.773 10.60 5.796 10.70 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY (CFS) (MIN.) 65.43 10.27 (MIN.) (INCH/HOUR) NUMBER 1 5.796 65.49 10.33 5.773 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 65.49 Tc(MIN.) = 10.33TOTAL AREA(ACRES) = 21.3 LONGEST FLOWPATH FROM NODE 1125.00 TO NODE 1124.00 = 1990 OO FEET ****************** FLOW PROCESS FROM NODE 1124.00 TO NODE 1127.00 IS CODE = 31 ______ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < < ______ ELEVATION DATA: UPSTREAM(FEET) = 819.60 DOWNSTREAM(FEET) = 790.00 FLOW LENGTH(FEET) = 80.00 MANNING'S N = 0.013DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 41.33 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 65.49PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 10.37 LONGEST FLOWPATH FROM NODE 1125.00 TO NODE 1127.00 = 2070.00 FEET. *********************** FLOW PROCESS FROM NODE 1127.00 TO NODE 1116.00 IS CODE = 51 ______ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < < ______ ELEVATION DATA: UPSTREAM(FEET) = 790.00 DOWNSTREAM(FEET) = 766.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 354.00 CHANNEL SLOPE = 0.0678 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 3.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.416 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000 SOIL CLASSIFICATION IS "C" S.C.S. CURVE NUMBER (AMC II) = 71 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.66
 AVERAGE FLOW DEPTH(FEET) = 0.99 TRAVEL TIME(MIN.) = 1.04
 Tc(MIN.) = 11.41
 SUBAREA AREA(ACRES) = 1.70
                            SUBAREA RUNOFF(CFS) = 2.76
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.514
 TOTAL AREA(ACRES) =
                    23.0
                              PEAK FLOW RATE(CFS) = 65.49
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.97 FLOW VELOCITY(FEET/SEC.) = 5.63
 LONGEST FLOWPATH FROM NODE 1125.00 TO NODE 1116.00 =
                                              2424.00 FEET.
*******************
 FLOW PROCESS FROM NODE 1116.00 TO NODE 1116.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                  AREA
 NUMBER
         (CFS) (MIN.) (INCH/HOUR) (ACRE)
65.49 11.41 5.416 23.00
   1
 LONGEST FLOWPATH FROM NODE 1125.00 TO NODE 1116.00 = 2424.00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                  AREA
                 (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
          (CFS)
          74.99
                 23.90
                        3.362
                                  70.40
   1
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1116.00 =
                                             4473.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
 NUMBER
                (MIN.) (INCH/HOUR)
        (CFS)
                11.41
    1
        101.29
                        5.416
                 23.90
        115.64
                           3.362
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 115.64 Tc(MIN.) = 23.90
 TOTAL AREA(ACRES) =
                    93.4
********************
 FLOW PROCESS FROM NODE 1116.00 TO NODE 1116.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
         RUNOFF TC INTENSITY
 STREAM
         (CFS)
 NUMBER
                (MIN.) (INCH/HOUR) (ACRE)
                23.90 3.362 93.40
         115.64
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1116.00 = 4473.00 FEET.
 ** MEMORY BANK # 3 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                  AREA
         (CFS) (MIN.) (INCH/HOUR) (ACRE)
14.71 13.32 4.902 10.00
 NUMBER
   1
```

LONGEST FLOWPATH FROM NODE 1117.00 TO NODE 1116.00 = 1417.00 FEET.

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                    INTENSITY
       (CFS) (MIN.) (INCH/HOUR)
79.16 13.32 4.902
 NUMBER
   1
   2
      125.73
              23.90
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) =
                125.73
                       Tc(MIN.) =
 TOTAL AREA(ACRES) =
                103.4
**********************
 FLOW PROCESS FROM NODE 1116.00 TO NODE 1116.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
FLOW PROCESS FROM NODE 1116.00 TO NODE 1116.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 3 <<<<<
______
***********************
 FLOW PROCESS FROM NODE
                 1116.00 TO NODE
                            1104.00 \text{ IS CODE} = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 766.00 DOWNSTREAM(FEET) = 730.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 684.00 CHANNEL SLOPE = 0.0526
 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 4.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.175
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 129.49
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.15
 AVERAGE FLOW DEPTH(FEET) = 0.94 TRAVEL TIME(MIN.) =
 Tc(MIN.) =
         26.11
 SUBAREA AREA(ACRES) = 7.90
                       SUBAREA RUNOFF(CFS) = 7.53
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.344
 TOTAL AREA(ACRES) =
               111.3
                         PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.92 FLOW VELOCITY(FEET/SEC.) = 5.09
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1104.00 = 5157.00 FEET.
***********************
 FLOW PROCESS FROM NODE 1104.00 TO NODE 1104.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
************************
 FLOW PROCESS FROM NODE 1128.00 TO NODE 1129.00 IS CODE = 21
______
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
 UPSTREAM ELEVATION(FEET) = 892.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                4.727
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 9.222
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.28
 TOTAL AREA(ACRES) =
                    0.10 TOTAL RUNOFF(CFS) = 0.28
**********************
 FLOW PROCESS FROM NODE 1129.00 TO NODE 1130.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 886.00 DOWNSTREAM(FEET) = 800.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 578.00 CHANNEL SLOPE = 0.1488
 CHANNEL BASE(FEET) = 28.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.738
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.76
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.69
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 5.71
 Tc(MIN.) = 10.43
                             SUBAREA RUNOFF(CFS) = 6.54
 SUBAREA AREA(ACRES) = 3.80
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 3.9
                               PEAK FLOW RATE(CFS) = 6.71
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 2.17
 LONGEST FLOWPATH FROM NODE 1128.00 TO NODE 1130.00 =
                                                628.00 FEET.
***********************
 FLOW PROCESS FROM NODE 1130.00 TO NODE 1131.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 800.00 DOWNSTREAM(FEET) = 780.00
 FLOW LENGTH(FEET) = 158.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 15.42
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.71
 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 10.61
 LONGEST FLOWPATH FROM NODE 1128.00 TO NODE 1131.00 =
                                                 786.00 FEET.
```

```
*******************
 FLOW PROCESS FROM NODE 1131.00 TO NODE 1104.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 780.00 DOWNSTREAM(FEET) = 730.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 580.00 CHANNEL SLOPE = 0.0862
 CHANNEL BASE(FEET) = 24.00 "Z" FACTOR = 2.500
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 4.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.544
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.32
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.21
 AVERAGE FLOW DEPTH(FEET) = 0.17 TRAVEL TIME(MIN.) = 4.37
 Tc(MIN.) = 14.98
                             SUBAREA RUNOFF(CFS) = 5.18
 SUBAREA AREA(ACRES) = 3.80
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) =
                     7.7
                              PEAK FLOW RATE(CFS) = 10.50
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) = 2.31
 LONGEST FLOWPATH FROM NODE 1128.00 TO NODE 1104.00 =
                                               1366.00 FEET.
*******************
 FLOW PROCESS FROM NODE 1104.00 TO NODE 1104.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                   AREA
 NUMBER
          (CFS)
                (MIN.) (INCH/HOUR) (ACRE)
          10.50 14.98
                        4.544
                                    7.70
 LONGEST FLOWPATH FROM NODE 1128.00 TO NODE 1104.00 = 1366.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                   AREA
 NUMBER
                 (MIN.) (INCH/HOUR) (ACRE)
          (CFS)
         186.19
                 17.56
   1
                          4.101
                                   82.80
 LONGEST FLOWPATH FROM NODE
                       176.00 TO NODE 1104.00 = 5019.36 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
 NUMBER
                       (INCH/HOUR)
         (CFS)
                (MIN.)
    1
        169.30
                 14.98
                           4.544
        195.67
                 17.56
                            4.101
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 195.67 Tc(MIN.) = 17.56
 TOTAL AREA(ACRES) =
                     90.5
*************************
 FLOW PROCESS FROM NODE 1104.00 TO NODE 1104.00 IS CODE = 11
```

109

```
>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
        RUNOFF
               Tc
                      INTENSITY
                (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
                               (ACRE)
               17.56
    1
         195.67
                        4.101
                               90.50
 LONGEST FLOWPATH FROM NODE
                     176.00 TO NODE 1104.00 = 5019.36 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
 STREAM
        RUNOFF
                \operatorname{Tc}
                      INTENSITY
                               AREA
               (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
        (CFS)
         125.73 26.11
    1
                       3.175 111.30
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1104.00 = 5157.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                      INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
280.24 17.56 / 101
 NUMBER
    1
    2
       277.24
               26.11
                         3.175
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) =
                  280.24 Tc(MIN.) =
                                  17.56
 TOTAL AREA(ACRES) =
                  201.8
***********************
 FLOW PROCESS FROM NODE 1104.00 TO NODE 1104.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<
______
******************
 FLOW PROCESS FROM NODE 1104.00 TO NODE 1104.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
******************
 FLOW PROCESS FROM NODE
                  1104.00 TO NODE 1132.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 730.00 DOWNSTREAM(FEET) = 636.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1083.00 CHANNEL SLOPE = 0.0868
 CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.827
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 284.71
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 9.08
 AVERAGE FLOW DEPTH(FEET) = 1.70 TRAVEL TIME(MIN.) =
                                         1.99
 Tc(MIN.) =
         19.55
 SUBAREA AREA(ACRES) = 7.80
                         SUBAREA RUNOFF(CFS) = 8.95
```

```
AREA-AVERAGE RUNOFF COEFFICIENT = 0.395
                         PEAK FLOW RATE(CFS) = 316.83
 TOTAL AREA(ACRES) = 209.6
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.81 FLOW VELOCITY(FEET/SEC.) = 9.39
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1132.00 = 6240.00 FEET.
FLOW PROCESS FROM NODE 1132.00 TO NODE 1132.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
******************
 FLOW PROCESS FROM NODE
                   201.00 TO NODE
                                 202.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 901.30
                       900.80
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                        0.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.337
 SUBAREA RUNOFF(CFS) = 0.40
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 900.00 DOWNSTREAM ELEVATION(FEET) = 896.00
 STREET LENGTH(FEET) = 315.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
  STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
  STREET FLOW DEPTH(FEET) = 0.30
  HALFSTREET FLOOD WIDTH(FEET) = 8.71
  AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.36
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71
 STREET FLOW TRAVEL TIME(MIN.) = 2.23 Tc(MIN.) = 9.35
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.156
```

```
RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.32
 TOTAL AREA(ACRES) =
                   1.1
                           PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 11.13
 FLOW VELOCITY(FEET/SEC.) = 2.69 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 365.00 FEET.
*******************
 FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 891.00 DOWNSTREAM(FEET) = 890.70
 FLOW LENGTH(FEET) = 24.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.65
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.66
 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) =
                                    9.43
 LONGEST FLOWPATH FROM NODE 201.00 TO NODE
                                   204.00 =
                                             389.00 FEET.
***********************
 FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.43
 RAINFALL INTENSITY(INCH/HR) = 6.13
 TOTAL STREAM AREA(ACRES) = 1.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.66
***********************
 FLOW PROCESS FROM NODE 205.00 TO NODE 206.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 925.00
 DOWNSTREAM ELEVATION(FEET) =
                       924.50
 ELEVATION DIFFERENCE(FEET) = 0.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.128
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.337
 SUBAREA RUNOFF(CFS) = 0.40
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.40
```

```
************************
 FLOW PROCESS FROM NODE 206.00 TO NODE 204.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 924.50 DOWNSTREAM ELEVATION(FEET) = 896.00
 STREET LENGTH(FEET) = 785.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.68
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.36
   HALFSTREET FLOOD WIDTH(FEET) = 11.52
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.62
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.65
 STREET FLOW TRAVEL TIME(MIN.) = 2.83 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.912
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 3.90 SUBAREA RUNOFF(CFS) = 12.45
 TOTAL AREA(ACRES) =
                        4.0
                                 PEAK FLOW RATE(CFS) = 12.77
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 14.96
 FLOW VELOCITY(FEET/SEC.) = 5.42 DEPTH*VELOCITY(FT*FT/SEC.) = 2.31
 LONGEST FLOWPATH FROM NODE 205.00 TO NODE 204.00 = 835.00 FEET.
********************
 FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.96
 RAINFALL INTENSITY(INCH/HR) = 5.91
 TOTAL STREAM AREA(ACRES) = 4.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.77
 ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        3.66
        9.43
        6.126
        1.10

        2
        12.77
        9.96
        5.912
        4.00

                                          1.10
                                             4.00
```

```
** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF TC INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
 NUMBER
         15.74 9.43 6.126
    1
    2
                9.96
         16.30
                       5.912
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 16.30 Tc(MIN.) =
                                  9.96
 TOTAL AREA(ACRES) = 5.1
 LONGEST FLOWPATH FROM NODE 205.00 TO NODE
                                  204.00 =
                                           835.00 FEET.
***********************
                   204.00 TO NODE
 FLOW PROCESS FROM NODE
                               207.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 890.70 DOWNSTREAM(FEET) = 888.00
 FLOW LENGTH(FEET) = 205.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.16
 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 16.30
 PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 10.38
 LONGEST FLOWPATH FROM NODE 205.00 TO NODE
                                  207.00 =
*******************
 FLOW PROCESS FROM NODE 207.00 TO NODE 207.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.38
 RAINFALL INTENSITY(INCH/HR) = 5.76
 TOTAL STREAM AREA(ACRES) = 5.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
***********************
 FLOW PROCESS FROM NODE 208.00 TO NODE 209.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 901.00
 DOWNSTREAM ELEVATION(FEET) = 900.00
 ELEVATION DIFFERENCE (FEET) = 1.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.657
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.515
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO

CONFLUENCE FORMULA USED FOR 2 STREAMS.

SUBAREA RUNOFF(CFS) = 0.46

```
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE 209.00 TO NODE
                                     207.00 \text{ IS CODE} = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 UPSTREAM ELEVATION(FEET) = 900.00 DOWNSTREAM ELEVATION(FEET) = 892.00
 STREET LENGTH(FEET) = 273.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.65
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.25
   HALFSTREET FLOOD WIDTH(FEET) = 6.38
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.15
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.80
 STREET FLOW TRAVEL TIME(MIN.) = 1.45 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.353
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 2.38 TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.24
 FLOW VELOCITY(FEET/SEC.) = 3.49 DEPTH*VELOCITY(FT*FT/SEC.) = 1.01
 LONGEST FLOWPATH FROM NODE 208.00 TO NODE 207.00 = 323.00 FEET.
********************
 FLOW PROCESS FROM NODE 207.00 TO NODE
                                      207.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.10
 RAINFALL INTENSITY(INCH/HR) = 7.35
 TOTAL STREAM AREA(ACRES) = 0.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.78
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  TC INTENSITY
                                       AREA
 NUMBER
          (CFS) (MIN.) (INCH/HOUR)
                                       (ACRE)
```

```
7.10
                         7.353
         2.78
                                   0.70
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
 NUMBER
        (CFS) (MIN.) (INCH/HOUR)
                      7.353
         15.54
                7.10
    1
         18.48 10.38
    2
                        5.757
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 18.48 Tc(MIN.) = 10.38
TOTAL AREA(ACRES) = 5.8
 LONGEST FLOWPATH FROM NODE 205.00 TO NODE 207.00 = 1040.00 FEET.
*******************
 FLOW PROCESS FROM NODE 207.00 TO NODE 210.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 888.00 DOWNSTREAM(FEET) = 887.50
 FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.95
 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 18.48
 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 10.42
 LONGEST FLOWPATH FROM NODE 205.00 TO NODE 210.00 = 1065.00 FEET.
******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.42
 RAINFALL INTENSITY(INCH/HR) = 5.74
 TOTAL STREAM AREA(ACRES) = 5.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
******************
 FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
 UPSTREAM ELEVATION(FEET) = 917.20
 DOWNSTREAM ELEVATION(FEET) = 916.50
ELEVATION DIFFERENCE(FEET) = 0.70
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.371
```

16.30 10.38 5.757

5.10

1

```
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.887
 SUBAREA RUNOFF(CFS) = 0.43
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 212.00 TO NODE 210.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 UPSTREAM ELEVATION(FEET) = 916.50 DOWNSTREAM ELEVATION(FEET) = 892.00
 STREET LENGTH(FEET) = 695.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.28
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.89
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.15
 STREET FLOW TRAVEL TIME(MIN.) = 2.97 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.160
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 5.66
TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 11.05
 FLOW VELOCITY(FEET/SEC.) = 4.47 DEPTH*VELOCITY(FT*FT/SEC.) = 1.55
 LONGEST FLOWPATH FROM NODE 211.00 TO NODE 210.00 =
                                                  745.00 FEET.
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <><
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.35
 RAINFALL INTENSITY(INCH/HR) = 6.16
 TOTAL STREAM AREA(ACRES) = 1.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.99
```

^{**} CONFLUENCE DATA **

```
STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                                      AREA
                                     (ACRE)
          18.48 10.42
5.99 9.35
    1
                          5.742
                                       5.80
    2
                            6.160
                                         1.80
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                         INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
23.21 9.35 6.160
24.06 10.42 5.742
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 24.06 Tc(MIN.) = TOTAL AREA(ACRES) = 7.6
 LONGEST FLOWPATH FROM NODE
                         205.00 TO NODE
                                       210.00 =
                                                 1065.00 FEET.
**********************
 FLOW PROCESS FROM NODE 210.00 TO NODE 213.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 887.50 DOWNSTREAM(FEET) = 864.00
 FLOW LENGTH(FEET) = 58.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 33.43
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 24.06
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 10.45
 LONGEST FLOWPATH FROM NODE 205.00 TO NODE
                                       213.00 =
                                                 1123.00 FEET.
******************
 FLOW PROCESS FROM NODE 213.00 TO NODE 214.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 864.00 DOWNSTREAM(FEET) = 720.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2276.00 CHANNEL SLOPE = 0.0633
 CHANNEL BASE(FEET) = 38.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 3.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.486
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.12
 AVERAGE FLOW DEPTH(FEET) = 0.36 TRAVEL TIME(MIN.) = 12.14
 Tc(MIN.) = 22.59
 SUBAREA AREA(ACRES) = 35.30
                             SUBAREA RUNOFF(CFS) = 36.92
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.343
                                PEAK FLOW RATE(CFS) = 51.22
 TOTAL AREA(ACRES) = 42.9
```

```
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 FLOW VELOCITY(FEET/SEC.) = 3.30
 LONGEST FLOWPATH FROM NODE 205.00 TO NODE
                                    214.00 =
                                             3399.00 FEET.
**********************
 FLOW PROCESS FROM NODE
                    214.00 TO NODE 214.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
**********************
 FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 926.10
 DOWNSTREAM ELEVATION(FEET) = 925.00
 ELEVATION DIFFERENCE(FEET) = 1.10
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.480
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.692
 SUBAREA RUNOFF(CFS) = 0.47
 TOTAL AREA(ACRES) =
                   0.10 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 216.00 TO NODE 217.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 UPSTREAM ELEVATION(FEET) = 925.00 DOWNSTREAM ELEVATION(FEET) = 890.00
 STREET LENGTH(FEET) = 1353.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 13.91
  STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
  STREET FLOW DEPTH(FEET) = 0.46
  HALFSTREET FLOOD WIDTH(FEET) = 16.60
  AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.84
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.22
 STREET FLOW TRAVEL TIME(MIN.) = 4.66 Tc(MIN.) = 10.14
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.845
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
```

```
AREA-AVERAGE RUNOFF COEFFICIENT = 0.540
 SUBAREA AREA(ACRES) = 8.30 SUBAREA RUNOFF(CFS) = 26.20
                   8.4
 TOTAL AREA(ACRES) =
                           PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) = 23.89
 FLOW VELOCITY(FEET/SEC.) = 5.62 DEPTH*VELOCITY(FT*FT/SEC.) = 3.10
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
      AND L = 1353.0 FT WITH ELEVATION-DROP = 35.0 FT, IS 33.5 CFS,
      WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 217.00
 LONGEST FLOWPATH FROM NODE
                      215.00 TO NODE 217.00 = 1403.00 FEET.
*******************
 FLOW PROCESS FROM NODE 217.00 TO NODE 218.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 884.00 DOWNSTREAM(FEET) = 883.60
 FLOW LENGTH(FEET) = 36.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.75
 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 26.51
 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 10.21
 LONGEST FLOWPATH FROM NODE 215.00 TO NODE
                                    218.00 =
                                             1439.00 FEET.
******************
 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.21
 RAINFALL INTENSITY(INCH/HR) = 5.82
 TOTAL STREAM AREA(ACRES) = 8.40
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 26.51
**********************
 FLOW PROCESS FROM NODE 219.00 TO NODE 220.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .8700
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 98
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
 UPSTREAM ELEVATION(FEET) = 912.00
 DOWNSTREAM ELEVATION(FEET) =
                       910.00
 ELEVATION DIFFERENCE(FEET) = 2.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 9.222
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.80
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.80
```

```
************************
 FLOW PROCESS FROM NODE 220.00 TO NODE 218.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 910.00 DOWNSTREAM ELEVATION(FEET) = 890.00
 STREET LENGTH(FEET) = 873.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.05
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.35
  HALFSTREET FLOOD WIDTH(FEET) = 11.29
  AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.63
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.28
 STREET FLOW TRAVEL TIME(MIN.) = 4.01 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.329
 RESIDENTIAL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5400
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 84
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.557
 SUBAREA AREA(ACRES) = 1.80 SUBAREA RUNOFF(CFS) = 8.10
 TOTAL AREA(ACRES) =
                     1.9
                             PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 14.18
 FLOW VELOCITY(FEET/SEC.) = 4.14 DEPTH*VELOCITY(FT*FT/SEC.) = 1.70
 LONGEST FLOWPATH FROM NODE 219.00 TO NODE 218.00 = 923.00 FEET.
********************
 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.85
 RAINFALL INTENSITY(INCH/HR) = 8.33
 TOTAL STREAM AREA(ACRES) = 1.90
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.82
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
         26.51 10.21 5.819
    1
                                      8.40
    2
          8.82
                 5.85
                           8.329
                                       1.90
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM RUNOFF TC INTENSITY

NUMBER (CFS) (MIN.) (INCH/HOUR)

1 24.03 5.85 8.329

2 32.67 10.21 5.819

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 32.67 Tc(MIN.) = 10.21

TOTAL AREA(ACRES) = 10.3

LONGEST FLOWPATH FROM NODE 215.00 TO NODE 218.00 = 1439.00 FEET.

FLOW PROCESS FROM NODE 218.00 TO NODE 221.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <

ELEVATION DATA: UPSTREAM(FEET) = 883.60 DOWNSTREAM(FEET) = 872.00 FLOW LENGTH(FEET) = 179.00 MANNING'S N = 0.013

DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.9 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 17.87

ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 32.67

PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 10.38

LONGEST FLOWPATH FROM NODE 215.00 TO NODE 221.00 = 1618.00 FEET.

FLOW PROCESS FROM NODE 221.00 TO NODE 222.00 IS CODE = 51

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<

>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <

ELEVATION DATA: UPSTREAM(FEET) = 872.00 DOWNSTREAM(FEET) = 802.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 651.00 CHANNEL SLOPE = 0.1075

CHANNEL BASE(FEET) = 32.00 "Z" FACTOR = 2.000

MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 3.00

100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.905

CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000

SOIL CLASSIFICATION IS "C"

S.C.S. CURVE NUMBER (AMC II) = 71

TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 38.16

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.70

AVERAGE FLOW DEPTH(FEET) = 0.32 TRAVEL TIME(MIN.) = 2.93

Tc(MIN.) = 13.30

SUBAREA AREA(ACRES) = 7.40 SUBAREA RUNOFF(CFS) = 10.89

AREA-AVERAGE RUNOFF COEFFICIENT = 0.442

TOTAL AREA(ACRES) = 17.7 PEAK FLOW RATE(CFS) = 38.34

END OF SUBAREA CHANNEL FLOW HYDRAULICS:

DEPTH(FEET) = 0.32 FLOW VELOCITY(FEET/SEC.) = 3.72

LONGEST FLOWPATH FROM NODE 215.00 TO NODE 222.00 = 2269.00 FEET.

```
FLOW PROCESS FROM NODE 222.00 TO NODE 222.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.30
 RAINFALL INTENSITY(INCH/HR) =
                         4.91
 TOTAL STREAM AREA(ACRES) = 17.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
******************
 FLOW PROCESS FROM NODE 223.00 TO NODE
                                   224.00 \text{ IS CODE} = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1016.00
 DOWNSTREAM ELEVATION(FEET) = 1014.00
 ELEVATION DIFFERENCE(FEET) = 2.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.853
 SUBAREA RUNOFF(CFS) = 0.24
                    0.10 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
***********************
 FLOW PROCESS FROM NODE 224.00 TO NODE 222.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1014.00 DOWNSTREAM(FEET) = 802.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2690.00 CHANNEL SLOPE = 0.0788
 CHANNEL BASE(FEET) = 12.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 3.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.045
 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.89
 AVERAGE FLOW DEPTH(FEET) = 0.55 TRAVEL TIME(MIN.) = 11.53
 Tc(MIN.) = 17.94
 SUBAREA AREA(ACRES) = 48.80
                            SUBAREA RUNOFF(CFS) = 71.06
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.360
 TOTAL AREA(ACRES) = 48.9
                           PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.77 FLOW VELOCITY(FEET/SEC.) = 4.66
 LONGEST FLOWPATH FROM NODE 223.00 TO NODE 222.00 = 2740.00 FEET.
************************
                     222.00 TO NODE
                                   222.00 \text{ IS CODE} = 1
 FLOW PROCESS FROM NODE
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 17.94
 RAINFALL INTENSITY(INCH/HR) = 4.04
 TOTAL STREAM AREA(ACRES) = 48.90
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 71.18
  ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        38.34
        13.30
        4.905
        17.70

        2
        71.18
        17.94
        4.045
        48.90

                                               17.70
                                               48.90
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
  ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                              INTENSITY
           (CFS) (MIN.) (INCH/HOUR)
91.12 13.30 4.905
102.79 17.94 4.045
 NUMBER
     1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 102.79 Tc(MIN.) = 17.94
TOTAL AREA(ACRES) = 66.6
 LONGEST FLOWPATH FROM NODE 223.00 TO NODE
                                               222.00 = 2740.00 FEET.
******************
 FLOW PROCESS FROM NODE 222.00 TO NODE 225.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 802.00 DOWNSTREAM(FEET) = 788.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 542.00 CHANNEL SLOPE = 0.0258
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 3.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.788
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 105.18
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.70
 AVERAGE FLOW DEPTH(FEET) = 1.68 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 19.86
                         4.20 SUBAREA RUNOFF(CFS) = 4.77
 SUBAREA AREA(ACRES) =
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.377
 TOTAL AREA(ACRES) = 70.8
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.66 FLOW VELOCITY(FEET/SEC.) = 4.65
 LONGEST FLOWPATH FROM NODE 223.00 TO NODE 225.00 = 3282.00 FEET.
```

```
FLOW PROCESS FROM NODE 225.00 TO NODE 225.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 19.86
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 70.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               102.79
********************
 FLOW PROCESS FROM NODE 226.00 TO NODE
                                   227.00 \text{ IS CODE} = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 CHAPARRAL(BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                               50.00
 UPSTREAM ELEVATION(FEET) = 954.00
 DOWNSTREAM ELEVATION(FEET) = 950.00
ELEVATION DIFFERENCE(FEET) = 4.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 9.114
 SUBAREA RUNOFF(CFS) = 0.27
                    0.10 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
***********************
 FLOW PROCESS FROM NODE 227.00 TO NODE 225.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 950.00 DOWNSTREAM(FEET) = 788.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1895.00 CHANNEL SLOPE = 0.0855
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 3.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.725
 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3600
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 76
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.51
 AVERAGE FLOW DEPTH(FEET) = 0.38 TRAVEL TIME(MIN.) = 9.01
 Tc(MIN.) = 14.10
 SUBAREA AREA(ACRES) = 16.00
                             SUBAREA RUNOFF(CFS) = 27.21
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.360
 TOTAL AREA(ACRES) = 16.1
                            PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.54 FLOW VELOCITY(FEET/SEC.) = 4.37
 LONGEST FLOWPATH FROM NODE 226.00 TO NODE 225.00 = 1945.00 FEET.
************************
                     225.00 TO NODE
                                   225.00 \text{ IS CODE} = 1
 FLOW PROCESS FROM NODE
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 14.10
 RAINFALL INTENSITY(INCH/HR) = 4.72
 TOTAL STREAM AREA(ACRES) = 16.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                     27.36
  ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        102.79
        19.86
        3.788
        70.80

        2
        27.36
        14.10
        4.725
        16.10

                                              70.80
                                               16.10
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
  ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                              INTENSITY
           (CFS) (MIN.) (INCH/HOUR)
109.77 14.10 4.725
124.72 19.86 3.788
 NUMBER
     1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 124.72 Tc(MIN.) = TOTAL AREA(ACRES) = 86.9
                                               19.86
 LONGEST FLOWPATH FROM NODE 223.00 TO NODE
                                              225.00 = 3282.00 FEET.
******************
 FLOW PROCESS FROM NODE 225.00 TO NODE 214.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 788.00 DOWNSTREAM(FEET) = 720.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1205.00 CHANNEL SLOPE = 0.0564
 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 4.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.376
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 131.77
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.17
 AVERAGE FLOW DEPTH(FEET) = 0.92 TRAVEL TIME(MIN.) = 3.89
 Tc(MIN.) =
            23.75
                        13.90 SUBAREA RUNOFF(CFS) = 14.08
 SUBAREA AREA(ACRES) =
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.363
 TOTAL AREA(ACRES) = 100.8
                                 PEAK FLOW RATE(CFS) = 124.72
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.89 FLOW VELOCITY(FEET/SEC.) = 5.08
 LONGEST FLOWPATH FROM NODE 223.00 TO NODE 214.00 = 4487.00 FEET.
******************
```

```
FLOW PROCESS FROM NODE 214.00 TO NODE 214.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                     AREA
          (CFS) (MIN.) (INCH/HOUR) (ACRE)
124.72 23.75 3.376 100.80
 NUMBER
   1
                         3.376 100.80
 LONGEST FLOWPATH FROM NODE 223.00 TO NODE
                                        214.00 = 4487.00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                 (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
          (CFS)
 1 51.22 22.59 3.486 42.90
LONGEST FLOWPATH FROM NODE 205.00 TO NODE 214.00 = 3399.00 FEET.
 ** PEAK FLOW RATE TABLE **
                          INTENSITY
 STREAM RUNOFF TC
        (CFS) (MIN.) (INCH/HOUR)
169.88 22.59 3.486
174.32 23.75 3.376
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 174.32 Tc(MIN.) = 23.75
 TOTAL AREA(ACRES) =
                     143.7
******************
 FLOW PROCESS FROM NODE 214.00 TO NODE
                                    214.00 \text{ IS CODE} = 12
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
******************
 FLOW PROCESS FROM NODE 214.00 TO NODE 1132.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 720.00 DOWNSTREAM(FEET) = 636.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 769.00 CHANNEL SLOPE = 0.1092
 CHANNEL BASE(FEET) = 12.00 "Z" FACTOR = 6.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 4.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.228
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 179.70
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 7.53
 AVERAGE FLOW DEPTH(FEET) = 1.23 TRAVEL TIME(MIN.) = 1.70
 Tc(MIN.) = 25.45
 SUBAREA AREA(ACRES) = 11.10
                              SUBAREA RUNOFF(CFS) = 10.75
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.353
 TOTAL AREA(ACRES) =
                    154.8
                                PEAK FLOW RATE(CFS) = 176.45
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.22 FLOW VELOCITY(FEET/SEC.) = 7.50
```

```
LONGEST FLOWPATH FROM NODE 223.00 TO NODE 1132.00 = 5256.00 FEET.
******************
                  1132.00 TO NODE 1132.00 IS CODE = 10
 FLOW PROCESS FROM NODE
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
*******************
 FLOW PROCESS FROM NODE 1133.00 TO NODE 1134.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 LAWNS, GOLF COURSES, ETC. GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 74
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 920.00
 DOWNSTREAM ELEVATION(FEET) =
                      916.00
 ELEVATION DIFFERENCE (FEET) = 4.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 9.114
 SUBAREA RUNOFF(CFS) = 0.27
 TOTAL AREA(ACRES) =
                  0.10 TOTAL RUNOFF(CFS) = 0.27
********************
 FLOW PROCESS FROM NODE 1134.00 TO NODE 1132.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 916.00 DOWNSTREAM(FEET) = 636.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2324.00 CHANNEL SLOPE = 0.1205
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.060 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.523
 CHAPARRAL (BROADLEAF) GOOD COVER RUNOFF COEFFICIENT = .3000
 SOIL CLASSIFICATION IS "C"
 S.C.S. CURVE NUMBER (AMC II) = 71
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.87
 AVERAGE FLOW DEPTH(FEET) = 0.31 TRAVEL TIME(MIN.) = 10.00
 Tc(MIN.) = 15.09
 SUBAREA AREA(ACRES) = 26.50
                          SUBAREA RUNOFF(CFS) = 35.96
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
 TOTAL AREA(ACRES) = 26.6
                           PEAK FLOW RATE(CFS) = 36.09
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.45 FLOW VELOCITY(FEET/SEC.) = 4.80
 LONGEST FLOWPATH FROM NODE 1133.00 TO NODE 1132.00 =
                                          2374.00 FEET.
FLOW PROCESS FROM NODE 1132.00 TO NODE 1132.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
```

```
** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                  AREA
         (CFS)
                 (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
          36.09 15.09
                       4.523
   1
                                  26.60
 LONGEST FLOWPATH FROM NODE 1133.00 TO NODE 1132.00 = 2374.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                  AREA
 NUMBER
         (CFS) (MIN.) (INCH/HOUR) (ACRE)
         316.83 19.55
                         3.827
                                  209.60
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1132.00 = 6240.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
280.60 15.09 4.523
 NUMBER
    1
        347.37
                 19.55
                           3.827
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 347.37 Tc(MIN.) = 19.55
 TOTAL AREA(ACRES) =
                   236.2
***********************
 FLOW PROCESS FROM NODE
                    1132.00 TO NODE
                                  1132.00 \text{ IS CODE} = 11
______
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
        RUNOFF TC INTENSITY
                                  AREA
         (CFS) (MIN.) (INCH/HOUR) (ACRE) 347.37 19.55 3.827 236.20
                 (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
    1
 LONGEST FLOWPATH FROM NODE 1106.00 TO NODE 1132.00 = 6240.00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                  AREA
         (CFS) (MIN.) (INCH/HOUR) (ACRE)
176.45 25.45 3.228 154.80
 NUMBER
                                 154.80
    1
 LONGEST FLOWPATH FROM NODE 223.00 TO NODE 1132.00 = 5256.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
       (CFS) (MIN.) (INCH/HOUR)
482.92 19.55 3.827
 NUMBER
    1
        469.49
                 25.45
                           3.228
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 482.92 Tc(MIN.) = 19.55
 TOTAL AREA(ACRES) =
                    391.0
********************
 FLOW PROCESS FROM NODE
                    1132.00 TO NODE 1132.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
*******************
```

END OF RATIONAL METHOD ANALYSIS

• PEAK DISCAHRGE REAT IS UNMITIGATED. The proposed detention basin and its outlet structure will regulate the out flow to no more than 78 cfs such that the overall discharge from the site at the final discharge point is not greater than that under the pre-development conditions.

100-YEAR HYDROGRAPH CALCULATIONS PRE-DEVELOPMENT CONDITIONS

******************* FLOOD ROUTING ANALYSIS ACCORDING TO COUNTY OF SAN DIEGO DEPARTMENT OF PUBLIC WORKS FLOOD CONTROL DIVISION HYDROLOGY MANUAL(2003) (c) Copyright 1989-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1503 Analysis prepared by: LANDMARK CONSULTING 9555 GENESEE AVE. SUITE 200 SAN DIEGO, CA 92121 TEL: 858-587-8070, FAX: 858-587-8750 ******************** DESCRIPTION OF STUDY ****************** * LILAC HILLS RANCH * IMPLEMENTATION TM * PRE-DEVELOPMENT CONDITIONS FILE NAME: 1037T1X.DAT TIME/DATE OF STUDY: 15:46 04/04/2012 ******************* FLOW PROCESS FROM NODE 101.00 TO NODE 118.00 IS CODE = >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) << < < ______ (UNIT-HYDROGRAPH ADDED TO STREAM #1) WATERCOURSE LENGTH = 6176.000 FEET LENGTH FROM CONCENTRATION POINT TO CENTROID = 2613.000 FEET ELEVATION VARIATION ALONG WATERCOURSE = 406.000 FEET BASIN FACTOR = 0.030WATERSHED AREA = 396.270 ACRES BASEFLOW = 0.000 CFS/SOUARE-MILE WATERCOURSE "LAG" TIME = 0.192 HOURS * Instantaneous Unit-Hydrograph Option Selected. CAUTION: LAG TIME IS LESS THAN 0.75 HOURS. THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM) MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. S.C.S. S-GRAPH SELECTED WATERSHED RUNOFF CURVE NUMBER = 85.00 SPECIFIED PEAK 5-MINUTES RAINFALL(INCH) = 0.77 SPECIFIED PEAK 30-MINUTES RAINFALL(INCH) = 1.45 SPECIFIED PEAK 1-HOUR RAINFALL(INCH) = 1.86 SPECIFIED PEAK 3-HOUR RAINFALL(INCH) = 2.74 SPECIFIED PEAK 6-HOUR RAINFALL(INCH) = 3.50 SPECIFIED PEAK 24-HOUR RAINFALL(INCH) = 6.00 24-HOUR NESTED DESIGN STORM DISTRIBUTION SELECTED

(Ref: San Diego County Hydrology Manual)

PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE FACTOR = 0.993

30-MINUTE FACTOR = 0.993

1-HOUR FACTOR = 0.996

3-HOUR FACTOR = 0.998

6-HOUR FACTOR = 0.998

24-HOUR FACTOR = 0.999

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 43.290

UNIT HYDROGRAPH DETERMINATION

INTERVAL	"a/ap" GF	RAPH	UNIT	T HYDROGRAPH	
NUMBER		ALUES	ORI	DINATES(CFS)	
1	0.	.474		856.205	
2	1.	.000		1805.093	
3	0.	.672		1213.893	
4	0.	. 277		499.926	
5	0.	.125		225.429	
6	0.	.054		97.560	
7	0.	.024		44.050	
8	0.	.011		19.489	
9	0.	.005		8.677	
10	0.	.000		0.000	

UNIT PERIOD (NUMBER)	UNIT RAINFALL (INCHES)	UNIT SOIL-LOSS (INCHES)	EFFECTIVE RAINFALL (INCHES)
1	0.0081	0.0081	0.0000
2	0.0081	0.0081	0.0000
3	0.0082	0.0082	0.0000
4	0.0082	0.0082	0.0000
5	0.0082	0.0082	0.0000
6	0.0082	0.0082	0.0000
7	0.0083	0.0083	0.0000
8	0.0083	0.0083	0.0000
9	0.0083	0.0083	0.0000
10	0.0083	0.0083	0.0000
11	0.0084	0.0084	0.0000
12	0.0084	0.0084	0.0000
13	0.0084	0.0084	0.0000
14	0.0085	0.0085	0.0000
15	0.0085	0.0085	0.0000
16	0.0085	0.0085	0.0000
17	0.0086	0.0086	0.0000
18	0.0086	0.0086	0.0000
19	0.0086	0.0086	0.0000
20	0.0086	0.0086	0.0000
21	0.0087	0.0087	0.0000
22	0.0087	0.0087	0.0000
23	0.0087	0.0087	0.0000
24	0.0088	0.0088	0.0000
25	0.0088	0.0088	0.0000
26	0.0088	0.0088	0.0000
27	0.0089	0.0089	0.0000
28	0.0089	0.0089	0.0000
29	0.0089	0.0089	0.0000
30	0.0099	0.0090	0.0000
31	0.0090	0.0090	0.0000
32	0.0090	0.0090	0.0000
33	0.0090	0.0091	0.0000
34	0.0091	0.0091	0.0000
35	0.0091	0.0091	0.0000
36	0.0091	0.0091	0.0000
37			
38	0.0092 0.0092	0.0092 0.0092	0.0000 0.0000
39	0.0093	0.0092	0.0000
40			
41	0.0093 0.0094	0.0093 0.0094	0.0000 0.0000
42	0.0094		
43		0.0093 0.0092	0.0001
	0.0094		0.0002
44	0.0095	0.0092	0.0003
45	0.0095	0.0091	0.0004
46	0.0095	0.0091	0.0005
47	0.0096	0.0090	0.0006
48	0.0096	0.0089	0.0007
49	0.0097	0.0089	0.0008
50	0.0097	0.0088	0.0009
51	0.0098	0.0088	0.0010
52	0.0098	0.0087	0.0011
53	0.0098	0.0087	0.0012
54	0.0099	0.0086	0.0013
55	0.0099	0.0086	0.0013

56	0.0100	0.0085	0.0014
57	0.0100	0.0085	0.0015
58	0.0100	0.0084	0.0016
59	0.0101	0.0084	0.0017
60	0.0101	0.0083	0.0018
61	0.0102	0.0083	0.0019
62	0.0102	0.0082	0.0020
63	0.0103	0.0082	0.0021
64	0.0103	0.0081	0.0022
65	0.0104	0.0081	0.0023
66	0.0104	0.0080	0.0024
67	0.0105	0.0080	0.0025
68	0.0105	0.0079	0.0026
69			
	0.0106	0.0079	0.0027
70	0.0106	0.0079	0.0028
71	0.0107	0.0078	0.0029
72	0.0107	0.0078	0.0030
73	0.0108	0.0077	0.0031
74	0.0108	0.0077	0.0032
75	0.0109	0.0077	0.0033
76	0.0110	0.0076	0.0033
77	0.0110	0.0076	0.0034
78	0.0111	0.0075	0.0035
79	0.0112	0.0075	0.0036
80	0.0112	0.0075	0.0037
81	0.0113	0.0074	0.0038
82	0.0113	0.0074	0.0039
83	0.0114	0.0074	0.0040
84	0.0114	0.0073	0.0041
85	0.0115	0.0073	0.0042
86	0.0116	0.0072	0.0043
87	0.0117	0.0072	0.0044
88	0.0117	0.0072	0.0045
89	0.0118	0.0072	0.0046
90	0.0118	0.0071	0.0047
91	0.0119	0.0071	0.0048
92	0.0120	0.0071	0.0049
93		0.0070	
	0.0121		0.0050
94	0.0121	0.0070	0.0051
95	0.0122	0.0070	0.0053
96	0.0123	0.0069	0.0054
97	0.0124	0.0069	0.0055
98	0.0124	0.0069	0.0056
99	0.0126	0.0069	0.0057
100	0.0126	0.0068	0.0058
101	0.0127	0.0068	0.0059
102	0.0128	0.0068	0.0060
103	0.0129	0.0068	0.0061
104	0.0129	0.0067	0.0062
105	0.0131	0.0067	0.0064
106	0.0131	0.0067	0.0065
107	0.0133	0.0067	0.0066
108	0.0133	0.0066	0.0067
109	0.0134	0.0066	0.0068
110	0.0135	0.0066	0.0069
111	0.0136	0.0066	0.0071
112	0.0137	0.0065	0.0072
113	0.0139	0.0065	0.0073
114	0.0139	0.0065	0.0074
115	0.0141	0.0065	0.0076
	0.0111	0.0003	0.0070

116	0.0141	0.0065	0.0077
117	0.0143	0.0065	0.0078
118	0.0144	0.0064	0.0080
119	0.0145	0.0064	0.0081
120	0.0146	0.0064	0.0082
121	0.0148	0.0064	0.0084
122	0.0149	0.0064	0.0085
123	0.0150	0.0064	0.0087
124	0.0151	0.0063	0.0088
125	0.0153	0.0063	0.0090
126	0.0154	0.0063	0.0091
127	0.0156	0.0063	0.0093
128	0.0157	0.0063	0.0094
129	0.0159	0.0063	0.0096
130	0.0160	0.0062	0.0097
131	0.0162	0.0063	0.0099
132	0.0163	0.0062	0.0101
133	0.0165	0.0062	0.0103
134	0.0166	0.0062	0.0104
135	0.0169	0.0062	0.0106
136	0.0170	0.0062	0.0108
137	0.0172	0.0062	0.0110
138	0.0174	0.0062	0.0112
139	0.0176	0.0062	0.0114
140	0.0178	0.0062	0.0116
141	0.0180	0.0062	0.0118
142	0.0182	0.0062	0.0120
143	0.0185	0.0062	0.0123
144	0.0186	0.0062	0.0125
145	0.0101	0.0033	0.0068
146	0.0176	0.0057	0.0118
147	0.0179	0.0058	0.0121
148	0.0181	0.0057	0.0123
149	0.0184	0.0058	0.0126
150	0.0186	0.0058	0.0128
151	0.0190	0.0058	0.0131
152	0.0192	0.0058	0.0133
153	0.0196	0.0059	0.0137
154	0.0198	0.0059	0.0139
155	0.0202	0.0059	0.0143
156	0.0205	0.0059	0.0146
157	0.0210	0.0060	0.0150
158	0.0212	0.0060	0.0152
159	0.0217	0.0060	0.0157
160	0.0220	0.0060	0.0160
161	0.0226	0.0061	0.0165
162	0.0229	0.0061	0.0168
163	0.0236	0.0062	0.0174
164	0.0239	0.0062	0.0177
165	0.0247	0.0063	0.0183
166	0.0251	0.0063	0.0187
167	0.0259	0.0065	0.0194
168	0.0263	0.0065	0.0199
169	0.0274	0.0066	0.0207
170	0.0279	0.0066	0.0212
171	0.0289	0.0068	0.0222
172	0.0295	0.0068	0.0227
173	0.0308	0.0070	0.0238
174	0.0315	0.0070	0.0245
175	0.0330	0.0072	0.0257
· -	- -		

176	0.0338	0.0073	0.0265
177	0.0356	0.0075	0.0281
178	0.0366	0.0076	0.0290
179			
	0.0389	0.0079	0.0310
180	0.0401	0.0080	0.0321
181	0.0430	0.0084	0.0346
182	0.0447	0.0086	0.0361
183	0.0486	0.0091	0.0395
184	0.0508	0.0093	0.0416
185	0.0573	0.0102	0.0471
186	0.0606	0.0105	0.0501
187	0.0692	0.0116	0.0576
188	0.0749	0.0122	0.0627
189	0.0903	0.0141	0.0762
190	0.1029	0.0154	0.0875
191	0.1511	0.0214	0.1296
192	0.2129	0.0280	0.1849
193	0.7629	0.0833	0.6797
194	0.1212	0.0112	0.1099
195	0.0820	0.0073	0.0746
196	0.0645	0.0056	0.0589
197	0.0534	0.0046	0.0488
198	0.0465	0.0039	0.0426
199			
	0.0415	0.0034	0.0381
200	0.0377	0.0031	0.0346
201	0.0347	0.0028	0.0319
202	0.0322	0.0026	0.0296
203	0.0301	0.0024	0.0278
204	0.0284	0.0022	0.0262
205	0.0268	0.0021	0.0247
206	0.0255	0.0020	0.0235
207	0.0243	0.0019	0.0224
208	0.0232	0.0018	0.0215
209	0.0223	0.0017	0.0206
210	0.0215	0.0016	0.0199
211		0.0015	
	0.0207		0.0192
212	0.0200	0.0015	0.0185
213	0.0194	0.0014	0.0179
214		0.0014	
	0.0188		0.0174
215	0.0182	0.0013	0.0169
216	0.0177	0.0013	0.0164
		0.0014	
217	0.0188		0.0174
218	0.0183	0.0013	0.0170
219	0.0179	0.0013	0.0166
220	0.0175	0.0012	0.0163
221	0.0171	0.0012	0.0159
222	0.0168	0.0012	0.0156
223	0.0164	0.0011	0.0153
224	0.0161	0.0011	0.0150
225	0.0158	0.0011	0.0147
226	0.0155	0.0011	0.0144
227	0.0152	0.0010	0.0142
228	0.0149	0.0010	0.0139
229	0.0147	0.0010	0.0137
230	0.0145	0.0010	0.0135
231	0.0142	0.0010	0.0133
232	0.0140	0.0009	0.0131
233	0.0138	0.0009	0.0129
234	0.0136	0.0009	0.0127
235	0.0134	0.0009	0.0125
۵ ی ی	0.0104	0.0007	0.0123

```
236
           0.0132
                        0.0009
                                        0.0123
237
           0.0130
                        0.0009
                                        0.0122
238
           0.0128
                        0.0008
                                        0.0120
239
            0.0127
                        0.0008
                                         0.0118
            0.0125
                        0.0008
240
                                         0.0117
241
            0.0123
                        0.0008
                                         0.0115
242
           0.0122
                        0.0008
                                        0.0114
243
           0.0120
                        0.0008
                                        0.0113
244
           0.0119
                        0.0008
                                        0.0111
245
           0.0118
                        0.0008
                                        0.0110
           0.0116
                        0.0007
246
                                         0.0109
           0.0115
                        0.0007
247
                                         0.0108
            0.0114
                        0.0007
248
                                         0.0106
           0.0112
                        0.0007
249
                                         0.0105
250
           0.0111
                        0.0007
                                        0.0104
251
           0.0110
                        0.0007
                                        0.0103
252
           0.0109
                        0.0007
                                        0.0102
           0.0108
253
                        0.0007
                                        0.0101
                        0.0007
254
            0.0107
                                         0.0100
                        0.0007
255
            0.0106
                                         0.0099
256
           0.0105
                        0.0006
                                        0.0098
257
          0.0104
                        0.0006
                                        0.0097
258
           0.0103
                        0.0006
                                        0.0096
                                        0.0095
259
           0.0102
                        0.0006
           0.0101
                        0.0006
                                         0.0095
260
           0.0100
                        0.0006
261
                                         0.0094
                        0.0006
262
           0.0099
                                         0.0093
           0.0098
263
                        0.0006
                                        0.0092
264
           0.0097
                        0.0006
                                        0.0091
265
           0.0096
                        0.0006
                                        0.0091
266
           0.0096
                        0.0006
                                        0.0090
           0.0095
267
                        0.0006
                                         0.0089
            0.0094
268
                        0.0006
                                         0.0088
                        0.0006
269
           0.0093
                                        0.0088
                        0.0005
270
           0.0093
                                        0.0087
           0.0092
                        0.0005
271
                                        0.0086
272
           0.0091
                        0.0005
                                        0.0086
273
           0.0090
                        0.0005
                                        0.0085
                        0.0005
           0.0090
274
                                         0.0085
                        0.0005
275
            0.0089
                                         0.0084
                        0.0005
           0.0088
276
                                         0.0083
277
           0.0088
                        0.0005
                                        0.0083
278
           0.0087
                        0.0005
                                        0.0082
279
           0.0087
                        0.0005
                                        0.0082
280
           0.0086
                        0.0005
                                        0.0081
           0.0085
                        0.0005
281
                                        0.0080
          0.0085
0.0084
                        0.0005
282
                                         0.0080
283
                        0.0005
                                        0.0079
284
           0.0084
                        0.0005
                                        0.0079
285
           0.0083
                        0.0005
                                        0.0078
286
           0.0083
                        0.0005
                                        0.0078
287
            0.0082
                        0.0005
                                         0.0077
            0.0082
                        0.0005
288
                                         0.0077
```

TOTAL STORM RAINFALL(INCHES) = 5.99

TOTAL SOIL-LOSS(INCHES) = 1.70

TOTAL EFFECTIVE RAINFALL(INCHES) = 4.30

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 56.0411

2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)
(Note: Time indicated is at END of Each Unit Intervals)

(N	ote: Time i	ndicated	is at	END of Eac	ch Unit In	tervals)	
TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	425.0	850.0	1275.0	1700.0
0.083	0.0000	0.00	Q				
0.167	0.0000	0.00	Q	•			•
0.250	0.0000	0.00	Q	•	•	•	•
0.333	0.0000	0.00	Q	•		•	
0.417	0.0000	0.00	Q	•	•	•	•
0.500	0.0000	0.00	Q	•	•	•	•
0.583	0.0000	0.00	Q	•	•	•	•
0.667	0.0000	0.00	Q	•		•	
0.750	0.0000	0.00	Q	•	•	•	•
0.833	0.0000	0.00	Q	•		•	
0.917	0.0000	0.00	Q	•	•	•	•
1.000	0.0000	0.00	Q	•		•	
1.083	0.0000	0.00	Q	•		•	
1.167	0.0000	0.00	Q	•			
1.250	0.0000	0.00	Q	•	•	•	•
1.333	0.0000	0.00	Q	•		•	
1.417	0.0000	0.00	Q	•			
1.500	0.0000	0.00	Q	•		•	
1.583	0.0000	0.00	Q	•		•	
1.667	0.0000	0.00	Q	•	•	•	•
1.750	0.0000	0.00	Q	•	•	•	•
1.833	0.0000	0.00	Q	•		•	
1.917	0.0000	0.00	Q	•		•	
2.000	0.0000	0.00	Q	•			
2.083	0.0000	0.00	Q	•	•	•	•
2.167	0.0000	0.00	Q	•	•	•	•
2.250	0.0000	0.00	Q	•		•	
2.333	0.0000	0.00	Q	•		•	
2.417	0.0000	0.00	Q	•	•	•	•
2.500	0.0000	0.00	Q	•	•	•	•
2.583	0.0000	0.00	Q	•	•	•	•
2.667	0.0000	0.00	Q	•	•	•	•
2.750	0.0000	0.00	Q	•		•	•
2.833	0.0000	0.00	Q	•		•	•
2.917	0.0000	0.00	Q	•	•	•	•
3.000	0.0000	0.00		•	•	•	•
3.083	0.0000	0.00	Q	•	•	•	•
3.167	0.0000	0.00	Q	•	•	•	•
3.250	0.0000	0.00		•	•	•	•
3.333	0.0000	0.00	Q	•	•	•	•
3.417	0.0000	0.01	Q	•	•	•	•
3.500	0.0006	0.09	Q	•	•	•	•
3.583	0.0029	0.32	Q	•	•	•	•
3.667	0.0076	0.69	Q	•	•	•	•
3.750	0.0152	1.11		•	•	•	•
3.833	0.0260	1.56	Q	•	•	•	•
3.917	0.0398	2.02		•	•	•	•
4.000	0.0569	2.48		•	•	•	•
4.083	0.0771	2.94	Q	•	•	•	•

4.167	0.1006	3.40	Q	_		_	
				•	•	*	•
4.250	0.1272	3.86	Q	•	•	•	•
4.333	0.1570	4.33	Q	•			
4.417	0.1899	4.78	Q				
				•	•	•	•
4.500	0.2260	5.24	Q	•	•	•	•
4.583	0.2653	5.70	Q				
4.667	0.3077	6.16	Q				
				•	•	•	•
4.750	0.3532	6.61	Q	•	•	•	•
4.833	0.4019	7.07	Q				
4.917	0.4537	7.52	Q				
				•	•	•	•
5.000	0.5087	7.98	Q	•	•	•	•
5.083	0.5667	8.43	Q				
5.167	0.6279	8.88	Q				
				•	•	•	•
5.250	0.6922	9.34	Q	•	•	•	•
5.333	0.7596	9.79	Q	_	_	_	_
5.417	0.8302	10.24					
			Q	•	•	•	•
5.500	0.9038	10.70	Q	•	•	•	•
5.583	0.9806	11.15	Q	_		_	_
				•	•	•	•
5.667	1.0605	11.60	Q	•	•	•	•
5.750	1.1435	12.06	Q	•			
5.833	1.2297	12.51	Q				
				•	•	•	•
5.917	1.3190	12.96	Q	•	•	•	•
6.000	1.4114	13.42	Q	•		•	
6.083	1.5069	13.87	Q				
				•	•	•	•
6.167	1.6056	14.33	Q	•	•	•	•
6.250	1.7075	14.79	Q				
6.333	1.8125	15.24	Q				
				•	•	•	•
6.417	1.9206	15.70	Q	•	•	•	•
6.500	2.0319	16.16	Q				
6.583	2.1464	16.63	Q				
				•	•	•	•
6.667	2.2641	17.09	Q	•	•	•	•
6.750	2.3850	17.55	Q				
6.833	2.5091	18.02	Q				
				•	•	•	•
6.917	2.6364	18.48	Q	•	•	•	•
7.000	2.7669	18.95	Q				
7.083	2.9007	19.42	Q				
				•	•	•	•
7.167	3.0378	19.90	Q	•	•	•	•
7.250	3.1781	20.37	Q				
7.333	3.3217	20.85	Q				
				•	•	•	•
7.417	3.4686	21.33	Q	•	•	•	•
7.500	3.6188	21.81	QV				
7.583	3.7724	22.30	QV				
				•	•	•	•
7.667	3.9293	22.79	QV	•	•	•	•
7.750	4.0896	23.28	QV				
7.833	4.2533	23.77	QV				
				•	•	•	•
7.917	4.4204	24.27	QV	•	•	•	•
8.000	4.5910	24.77	QV				
8.083	4.7651	25.27					
			QV	•	•	•	•
8.167	4.9426	25.78	QV	•	•	•	•
8.250	5.1237	26.29	QV				
		26.81					
8.333	5.3083		QV	•	•	•	•
8.417	5.4964	27.32	QV	•		•	
8.500	5.6883	27.85	QV				-
8.583	5.8837	28.38		•	•	•	-
			QV	•	•	•	•
8.667	6.0828	28.91	QV	•	•	•	•
8.750	6.2856	29.45	QV				
8.833	6.4922	29.99		-	-	•	•
			QV	•	•	•	•
8.917	6.7025	30.54	QV	•	•	•	•
9.000	6.9167	31.10	QV	•		•	
9.083	7.1347	31.66	Q V				
J.003	, J _ 1	21.00	× v	•	•	•	•

9.167	7.3567	32.22	Q V		•	•	•
9.250	7.5825	32.80	Q V		•	•	
9.333	7.8124	33.38	Q V		•	ě	ē
9.417	8.0463	33.96	Õ V		_	_	_
9.500	8.2843	34.56	Q V	•	•	•	•
9.583	8.5264		O V	•	•	•	•
		35.16	~	•	•	•	•
9.667	8.7727	35.77	Q V	•	•	•	•
9.750	9.0233	36.38	Q V	•	•	•	•
9.833	9.2782	37.01	Q V	•	•	•	•
9.917	9.5374	37.64	Q V		•	•	•
10.000	9.8011	38.29	QV			•	
10.083	10.0693	38.94	O V		•		•
10.167	10.3420	39.60	Q V		_	_	
10.250	10.6194	40.27	Q V	•	•	•	•
10.333	10.9015	40.96		•	•	•	•
			Q V	•	•	•	•
10.417	11.1884	41.65	Q V	•	•	•	•
10.500	11.4801	42.36	Q V	•	•	•	•
10.583	11.7769	43.08	.Q V	•	•	•	•
10.667	12.0786	43.82	.Q V				
10.750	12.3855	44.56	.Q V	•	•	•	•
10.833	12.6976	45.32	.Q V	•	•	•	
10.917	13.0151	46.09	.Q V			•	
11.000	13.3380	46.89	.Q V				
11.083	13.6664	47.69	.Q V		_	_	_
11.167	14.0006	48.52	.Q V	•	•	•	•
11.250	14.3405	49.35	.Q V	•	•	•	•
11.333	14.6863	50.21	.Q V	•	•	•	•
11.417	15.0382	51.09		•	•	•	•
			.Q V	•	•	•	•
11.500	15.3962	51.99	.Q V	•	•	•	•
11.583	15.7606	52.91	.Q V	•	•	•	•
11.667	16.1315	53.85	.Q V	•	•	•	•
11.750	16.5090	54.81	.Q V	•	•	•	•
11.833	16.8933	55.81	.Q V	•	•	•	•
11.917	17.2847	56.82	.Q V		•	•	
12.000	17.6832	57.87	.Q V	•	•	•	•
12.083	18.0538	53.82	.Q V		•	•	ě
12.167	18.3866	48.31	.Q V			•	
12.250	18.7378	50.99	.0 V	_		_	_
12.333	19.1169	55.06	.Q V				
12.417	19.5115	57.28	.Q V	•	•	•	•
12.500	19.9176	58.97	.Q V	•	•	•	•
12.583				•	•	•	•
	20.3334	60.38	.Q V	•	•	•	•
12.667	20.7585	61.72	.Q V	•	•	•	•
12.750	21.1927	63.05	.Q V	•	•	•	•
12.833	21.6364	64.43	.Q V	•	•	•	•
12.917	22.0897	65.81	.Q V	•	•	•	•
13.000	22.5529	67.26	.Q V		•	•	
13.083	23.0264	68.75	.Q V	•	•	•	
13.167	23.5107	70.32	.Q V		•		
13.250	24.0062	71.95	.Q V		•	•	
13.333	24.5135	73.66	. Q V				
13.417	25.0331	75.44	.Q V				
13.500	25.5656	77.32	.Q V		•	•	•
13.583	26.1116	79.28	.Q V		•	•	•
					•	•	•
13.667	26.6719	81.35	. Q V		•	•	•
13.750	27.2471	83.53	.Q V		•	•	•
13.833	27.8383	85.83	. Q V		•	•	•
13.917	28.4461	88.26		V .	•	•	•
14.000	29.0718	90.85		V .	•	•	•
14.083	29.7167	93.64	. Q '	V .	•	•	•

14 160	20 2005	06 50	0	7.7			
14.167	30.3827	96.70	. Q	V .	•	•	
14.250	31.0707	99.90	. Q	V.	•		
14.333	31.7820	103.28	. Q	V.	•		
14.417	32.5181	106.88	. Q	V.	•	•	•
14.500	33.2809	110.77	. Q	٧.	•	•	
14.583	34.0726	114.96	. Q	V.	•	•	•
14.667	34.8959	119.54	. Q	V.	•		
14.750	35.7534	124.51	. Q	V	•		
14.833	36.6488	130.02	. Q	V			
14.917	37.5860	136.07	. Q	V	•		
15.000	38.5698	142.85	. Q	V	•		
15.083	39.6058	150.42	. Q	.V	•		
15.167	40.7010	159.04	. Q	.V	•		
15.250	41.8641	168.87	. Q	.V	•		
15.333	43.1058	180.30	. Q	. V	•		
15.417	44.4448	194.42	. Q	. V	•		
15.500	45.9044	211.93	. Q	. 7	V .		
15.583	47.5065	232.63	. () . T	V .		
15.667	49.2822	257.84	•	Q . 7	. V		
15.750	51.2853	290.84		Q.	V .		
15.833	53.6005	336.17		Q.	V .		
15.917	56.4506	413.83	•	Q.	V .		
16.000	60.3060	559.80		. (Q V .		
16.083	68.1844	1143.96		•	V.	Q .	
16.167	79.4910	1641.71		•	•	V .	. Q.
16.250	87.9115	1222.66		•	•	V Q	
16.333	92.8605	718.59		•	Q.	V .	
16.417	96.1183	473.03		.Q		V .	
16.500	98.4322	335.98		Q.		V .	
16.583	100.2259	260.45		Q.		V.	
16.667	101.7049	214.75	. Ç			V.	
16.750	102.9816	185.38	. Q	•		V.	
16.833	104.1065	163.33	. Q			V.	
16.917	105.1390	149.93	. Q			V.	
17.000	106.0981	139.26	. Q				<i>J</i> .
17.083	106.9960	130.37	. Q			7	J .
17.167	107.8414	122.75	. Q			7	J .
17.250	108.6418	116.22	. Q			7	<i>J</i> .
17.333	109.4033	110.57	. Q	•			. V .
17.417	110.1306	105.60	. Q				.V .
17.500	110.8275	101.18	. Q				.V .
17.583	111.4970	97.22	. Q				. V .
17.667	112.1420	93.64	. Q	•			.V .
17.750	112.7645	90.39	. Q				.V .
17.833	113.3666	87.42	. Q				. V .
17.917	113.9499	84.69	.Q				. V .
18.000	114.5158	82.17	.Q	•			. V .
18.083	115.0742	81.07	.Q	•			. V .
18.167	115.6354	81.49	.Q	•			. V .
18.250	116.1945	81.18	.Q	_			. V .
18.333	116.7452	79.96	.Q	_			. V .
18.417	117.2855	78.45	.Q	•	•	•	. V .
18.500	117.2033	76.15	. Q	•	•	•	. V .
18.583	118.3334	75.29	. Q	•	•	•	. V .
18.667	118.8415	73.78	. Q . Q	•	•		. V .
18.750	119.3397	72.33	. Q . Q	•	•	•	. v .
18.833	119.8283	70.95	. Q . Q	•	•		. v .
18.917	120.3078	69.63	. Q . Q	•	•		. v .
19.000	120.3078	68.38	. Q . Q	•	•		. v .
19.000	121.2414	67.18	. Q . Q	•	•		. v .
17.003	101.0717	07.10	• ×	•	•	•	. v .

19.167	121.6963	66.04	.Q				V .
19.250	122.1436	64.95	.Q				V .
19.333	122.5838	63.91	.Q				v .
19.417	123.0171	62.91	. Q	_			v .
19.500	123.4438	61.95	.Q	•	•	•	v .
19.583	123.4430	61.03		•	•	•	
			. Q	•	•	•	V .
19.667	124.2784	60.15	.Q	•	•	•	V .
19.750	124.6868	59.30	.Q	•	•	•	V .
19.833	125.0895	58.48	.Q	•	•	•	V .
19.917	125.4868	57.69	.Q	•			V .
20.000	125.8789	56.93	.Q				V .
20.083	126.2659	56.19	.Q				V .
20.167	126.6480	55.48	. Q	_			v .
20.250	127.0254	54.80	.Q		•	•	v .
20.333	127.3982			•	•	•	
		54.13	. Q	•	•	•	V .
20.417	127.7666	53.49	.Q	•	•	•	V .
20.500	128.1307	52.87	.Q	•	•	•	V .
20.583	128.4906	52.26	.Q	•	•	•	V .
20.667	128.8466	51.68	.Q	•			V .
20.750	129.1985	51.11	.Q				V .
20.833	129.5467	50.56	.Q				v .
20.917	129.8912	50.02	.Q	_			v .
21.000	130.2321	49.50	.Q	•	•	•	v .
21.083	130.5696	48.99		•	•	•	v .
	130.9036		.Q	•	•	•	
21.167		48.50	. Q	•	•	•	V .
21.250	131.2343	48.02	.Q	•	•	•	V .
21.333	131.5618	47.55	.Q	•	•	•	V .
21.417	131.8861	47.09	.Q	•	•	•	V .
21.500	132.2074	46.65	.Q	•			V .
21.583	132.5257	46.22	.Q	•			V .
21.667	132.8411	45.80	.Q	•			V .
21.750	133.1537	45.38	.Q	•			v .
21.833	133.4635	44.98	.Q	_			V .
21.917	133.7706	44.59	.Q		•	•	v .
22.000	134.0750	44.21	.Q	•	•	•	v .
22.083	134.3769	43.83	. Q	•	•	•	v . V .
		43.46		•	•	•	
22.167	134.6762		. Q	•	•	•	V .
22.250	134.9731	43.11	. Q	•	•	•	V .
22.333	135.2676	42.75	.Q	•	•	•	V .
22.417	135.5596	42.41	Q	•	•	•	V .
22.500	135.8494	42.08	Q	•	•	•	V .
22.583	136.1369	41.75	Q	•			V .
22.667	136.4222	41.42	Q	•	•	•	V .
22.750	136.7053	41.11	Q				V .
22.833	136.9863	40.80	Q				V .
22.917	137.2652	40.50	Q				v .
23.000	137.5421	40.20	Q	•	•	•	v . V .
23.000		39.91		•	•	•	
	137.8170		Q	•	•	•	٧.
23.167	138.0898	39.62	Q	•	•	•	V.
23.250	138.3608	39.34	Q	•	•	•	V.
23.333	138.6299	39.07	Q	•	•	•	V.
23.417	138.8971	38.80	Q	•			V.
23.500	139.1625	38.53	Q	•			V.
23.583	139.4261	38.27	Q	•	•		V.
23.667	139.6879	38.02	Q				V.
23.750	139.9480	37.77	Q				v.
23.833	140.2065	37.52	Q	-	-	•	v.
23.917	140.4632	37.28	Q	•	•	•	v. V.
24.000	140.4032	37.26		•	•	•	
24.000			Q	•	•	•	V.
∠4.U83	140.9268	30.27	Q	•	•	•	V.

24.167 24.250 24.333 24.417 24.500 24.583 24.667 24.750	141.0390 141.0866 141.1076 141.1166 141.1205 141.1219 141.1224 141.1224	16.29 6.91 3.05 1.31 0.56 0.22 0.07 0.00	Q Q Q Q Q Q Q Q Q		V. V. V. V. V.
+	NALYSIS			 	 + +

END OF FLOODSCx ROUTING ANALYSIS

100-YEAR HYDROGRAPH CALCULATIONS POST-DEVELOPMENT CONDITIONS

POST-DEVELOPMENT CONDITIONS ****************** FLOOD ROUTING ANALYSIS ACCORDING TO COUNTY OF SAN DIEGO DEPARTMENT OF PUBLIC WORKS FLOOD CONTROL DIVISION HYDROLOGY MANUAL(2003) (c) Copyright 1989-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1503 Analysis prepared by: LANDMARK CONSULTING 9555 GENESEE AVE. SUITE 200 SAN DIEGO, CA 92121 TEL: 858-587-8070, FAX: 858-587-8750 ******************** DESCRIPTION OF STUDY ****************** * LILAC HILLS RANCH * IMPLEMENTATION TM * POST-DEVELOPMENT CONDITIONS ******************* FILE NAME: 1037I1P.DAT TIME/DATE OF STUDY: 15:56 04/04/2012 FLOW PROCESS FROM NODE ._____ >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) < < < < ______ (UNIT-HYDROGRAPH ADDED TO STREAM #1) WATERCOURSE LENGTH = 6606.000 FEET LENGTH FROM CONCENTRATION POINT TO CENTROID = 3090.000 FEET ELEVATION VARIATION ALONG WATERCOURSE = 406.000 FEET BASIN FACTOR = 0.015WATERSHED AREA = 396.300 ACRES BASEFLOW = 0.000 CFS/SOUARE-MILE WATERCOURSE "LAG" TIME = 0.107 HOURS * Instantaneous Unit-Hydrograph Option Selected. CAUTION: LAG TIME IS LESS THAN 0.75 HOURS. THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM) MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. S.C.S. S-GRAPH SELECTED WATERSHED RUNOFF CURVE NUMBER = 87.00 SPECIFIED PEAK 5-MINUTES RAINFALL(INCH) = 0.77 SPECIFIED PEAK 30-MINUTES RAINFALL(INCH) = 1.45 SPECIFIED PEAK 1-HOUR RAINFALL(INCH) = 1.86

> SPECIFIED PEAK 3-HOUR RAINFALL(INCH) = 2.74 SPECIFIED PEAK 6-HOUR RAINFALL(INCH) = 3.50 SPECIFIED PEAK 24-HOUR RAINFALL(INCH) = 6.00

24-HOUR NESTED DESIGN STORM DISTRIBUTION SELECTED (Ref: San Diego County Hydrology Manual)

PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE FACTOR = 0.993

30-MINUTE FACTOR = 0.993

1-HOUR FACTOR = 0.996

3-HOUR FACTOR = 0.998

6-HOUR FACTOR = 0.998

24-HOUR FACTOR = 0.999

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 78.179

UNIT HYDROGRAPH DETERMINATION

INTERVAL NUMBER	1, 11	 GRAPH VALUES	UNIT HYDROGRAPH ORDINATES(CFS)	
1		0.991	3231.131	
2		0.382	1245.081	
3		0.089	289.969	
4		0.020	65.801	
5		0.005	15.186	
6		0.000	0.000	

			* * * * * * * * * * * * * * * * * * * *
UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0081	0.0081	0.0000
2	0.0081	0.0081	0.0000
3	0.0082	0.0082	0.0000
4	0.0082	0.0082	0.0000
5	0.0082	0.0082	0.0000
6	0.0082	0.0082	0.0000
7	0.0083	0.0083	0.0000
, 8	0.0083	0.0083	0.0000
9	0.0083	0.0083	0.0000
10	0.0083	0.0083	0.0000
11	0.0084	0.0084	0.0000
12	0.0084	0.0084	0.0000
13	0.0084	0.0084	0.0000
14	0.0085	0.0085	0.0000
15	0.0085	0.0085	0.0000
16	0.0085	0.0085	0.0000
17	0.0086	0.0086	0.0000
18	0.0086	0.0086	0.0000
19	0.0086	0.0086	0.0000
20	0.0086	0.0086	0.0000
21	0.0087	0.0087	0.0000
22	0.0087	0.0087	0.0000
23	0.0087	0.0087	0.0000
24	0.0088	0.0088	0.0000
25	0.0088	0.0088	0.0000
26	0.0088	0.0088	0.0000
27	0.0089	0.0089	0.0000
28	0.0089	0.0089	0.0000
29	0.0089	0.0089	0.0000
30	0.0090	0.0090	0.0000
31	0.0090	0.0090	0.0000
32	0.0090	0.0090	0.0000
33	0.0091	0.0091	0.0000
34	0.0091	0.0091	0.0000
35	0.0091	0.0091	0.0000
36	0.0092	0.0091	0.0001
37	0.0092	0.0090	0.0002
38	0.0092	0.0089	0.0003
39	0.0093	0.0089	0.0004
40	0.0093	0.0088	0.0005
41	0.0094	0.0087	0.0006
42	0.0094	0.0086	0.0007
43	0.0094	0.0086	0.0008
44	0.0095	0.0085	0.0009
45 46	0.0095	0.0085	0.0011
47	0.0095	0.0084	0.0012
47	0.0096 0.0096	0.0083 0.0082	0.0013 0.0014
48	0.0096	0.0082	0.0014
50	0.0097	0.0082	0.0015
51	0.0097	0.0081	0.0017
52	0.0098	0.0081	0.0017
53	0.0098	0.0080	0.0018
54	0.0099	0.0079	0.0020
55	0.0099	0.0078	0.0021
~ ~	- • • • • • •	- • • • • •	

56	0.0100	0.0078	0.0022
57	0.0100	0.0077	0.0023
58	0.0100	0.0077	0.0024
59	0.0101	0.0076	0.0025
60	0.0101	0.0075	0.0026
61	0.0102	0.0075	0.0027
62	0.0102	0.0074	0.0028
63			
	0.0103	0.0074	0.0029
64	0.0103	0.0073	0.0030
65	0.0104	0.0073	0.0031
66	0.0104	0.0072	0.0032
67	0.0105	0.0072	0.0033
68	0.0105	0.0071	0.0034
69	0.0106	0.0071	0.0035
70	0.0106	0.0071	0.0035
71	0.0107	0.0070	0.0037
72	0.0107	0.0070	0.0038
73	0.0108	0.0069	0.0039
74	0.0108	0.0069	0.0040
75	0.0109	0.0068	0.0041
76	0.0110	0.0068	0.0042
77	0.0110	0.0067	0.0043
78	0.0111	0.0067	0.0044
79	0.0112	0.0067	0.0045
80	0.0112	0.0066	0.0046
81	0.0113	0.0066	0.0047
82	0.0113	0.0065	0.0048
83	0.0114	0.0065	0.0049
84	0.0114	0.0064	0.0050
85	0.0115	0.0064	0.0051
86	0.0116	0.0064	0.0052
87	0.0117	0.0063	0.0053
88	0.0117	0.0063	0.0054
89	0.0118	0.0063	0.0055
90	0.0118	0.0062	0.0056
91	0.0119	0.0062	0.0057
92	0.0120	0.0062	
			0.0058
93	0.0121	0.0061	0.0059
94	0.0121	0.0061	0.0060
95	0.0122	0.0061	0.0062
96	0.0123	0.0060	0.0063
97	0.0124	0.0060	0.0064
98	0.0124	0.0060	0.0065
99	0.0126	0.0060	0.0066
100	0.0126	0.0059	0.0067
101	0.0127	0.0059	
			0.0068
102	0.0128	0.0059	0.0069
103	0.0129	0.0058	0.0071
104	0.0129	0.0058	0.0072
105	0.0131	0.0058	0.0073
106	0.0131	0.0057	0.0074
107	0.0133	0.0057	0.0075
108	0.0133	0.0057	0.0076
100	0.0133	0.0057	
			0.0078
110	0.0135	0.0056	0.0079
111	0.0136	0.0056	0.0080
112	0.0137	0.0056	0.0081
113	0.0139	0.0056	0.0083
114	0.0139	0.0055	0.0084
115	0.0141	0.0055	0.0085

116	0.0141	0.0055	0.0086
117	0.0143	0.0055	0.0088
118	0.0144	0.0055	0.0089
119	0.0145	0.0055	0.0091
120	0.0146	0.0054	0.0092
121	0.0148	0.0054	0.0094
122	0.0149	0.0054	0.0095
123	0.0150	0.0054	0.0097
124	0.0151	0.0053	0.0098
125	0.0153	0.0053	0.0100
126	0.0154	0.0053	0.0101
127	0.0156	0.0053	0.0103
128	0.0157	0.0053	0.0104
129	0.0159	0.0053	0.0106
130	0.0160	0.0053	0.0107
131	0.0162	0.0053	0.0109
132	0.0163	0.0052	0.0111
133	0.0165	0.0052	
			0.0113
134	0.0166	0.0052	0.0114
135	0.0169	0.0052	0.0117
136	0.0170	0.0052	0.0118
137	0.0172	0.0052	0.0121
138	0.0174	0.0052	0.0122
139	0.0176	0.0052	0.0125
140	0.0178	0.0051	0.0126
141	0.0180	0.0052	0.0129
142	0.0182	0.0051	0.0131
143	0.0185	0.0052	0.0133
144	0.0186	0.0051	0.0135
145	0.0101	0.0027	0.0073
146	0.0176		
		0.0047	0.0128
147	0.0179	0.0048	0.0131
148	0.0181	0.0048	0.0133
149	0.0184	0.0048	0.0136
150	0.0186	0.0048	0.0138
151	0.0190	0.0048	0.0142
152	0.0192	0.0048	0.0144
153	0.0196	0.0048	0.0147
154	0.0198	0.0048	0.0150
155	0.0202	0.0049	0.0154
156	0.0205	0.0049	0.0156
		0.0049	
157	0.0210		0.0160
158	0.0212	0.0049	0.0163
159	0.0217	0.0050	0.0168
160	0.0220	0.0050	0.0171
161	0.0226	0.0050	0.0176
162	0.0229	0.0050	0.0179
163	0.0236	0.0051	0.0185
164	0.0239	0.0051	0.0189
165	0.0247	0.0052	0.0195
166	0.0251	0.0052	0.0199
167	0.0259	0.0052	0.0206
	0.0263	0.0053	0.0211
168			
169	0.0274	0.0054	0.0220
170	0.0279	0.0054	0.0225
171	0.0289	0.0055	0.0234
172	0.0295	0.0055	0.0240
173	0.0308	0.0057	0.0251
174	0.0315	0.0057	0.0258
175	0.0330	0.0058	0.0271
1 / J	0.0330	0.0050	0.02/1

176	0.0338	0.0059	0.0279
177	0.0356	0.0061	0.0295
178	0.0366	0.0061	0.0305
179	0.0389	0.0064	0.0325
180	0.0401	0.0064	0.0337
181	0.0430	0.0067	0.0363
182	0.0447	0.0068	0.0378
183	0.0486	0.0073	0.0413
184	0.0508	0.0074	0.0434
185	0.0573	0.0081	0.0492
186	0.0606	0.0084	0.0523
187	0.0692	0.0092	0.0600
188	0.0749	0.0096	0.0652
189	0.0903	0.0112	0.0791
190	0.1029	0.0122	0.0907
191	0.1511	0.0169	0.1342
192	0.2129	0.0220	0.1909
193	0.7629	0.0649	0.6981
194	0.1212	0.0087	0.1125
195	0.0820	0.0057	0.0763
196	0.0645	0.0043	0.0602
197	0.0534	0.0035	0.0499
198	0.0465	0.0030	0.0435
199	0.0415	0.0027	0.0389
200	0.0377	0.0024	0.0353
201	0.0347	0.0022	0.0325
202	0.0322	0.0020	0.0302
203			
	0.0301	0.0018	0.0283
204	0.0284	0.0017	0.0267
205	0.0268	0.0016	0.0252
206	0.0255	0.0015	0.0239
207	0.0243	0.0014	0.0229
208	0.0232	0.0014	0.0219
209	0.0223	0.0013	0.0210
210	0.0215	0.0012	0.0202
211	0.0207	0.0012	0.0195
212	0.0200	0.0011	0.0189
213	0.0194	0.0011	0.0183
214	0.0188	0.0011	0.0177
215	0.0182	0.0010	0.0172
216	0.0177	0.0010	0.0167
217	0.0188	0.0010	0.0178
218	0.0183	0.0010	0.0173
219	0.0179	0.0010	0.0169
220	0.0175	0.0009	0.0166
221	0.0171	0.0009	0.0162
222	0.0168	0.0009	0.0159
223	0.0164	0.0009	0.0155
224	0.0161	0.0009	0.0152
225	0.0158	0.0008	0.0150
226	0.0155	0.0008	0.0147
227	0.0152	0.0008	0.0144
228	0.0149	0.0008	0.0142
229	0.0147	0.0008	0.0139
230	0.0145	0.0007	0.0137
231	0.0142	0.0007	0.0135
232	0.0140	0.0007	0.0133
233	0.0138	0.0007	0.0131
	0.0136		
234		0.0007	0.0129
235	0.0134	0.0007	0.0127

```
236
           0.0132
                         0.0007
                                         0.0125
237
           0.0130
                         0.0007
                                         0.0124
238
           0.0128
                         0.0006
                                         0.0122
239
           0.0127
                         0.0006
                                         0.0120
            0.0125
                         0.0006
240
                                         0.0119
                         0.0006
241
            0.0123
                                         0.0117
                                         0.0116
242
           0.0122
                        0.0006
243
           0.0120
                        0.0006
                                         0.0114
244
           0.0119
                        0.0006
                                         0.0113
245
           0.0118
                        0.0006
                                         0.0112
           0.0116
                        0.0006
246
                                         0.0111
           0.0115
                        0.0006
247
                                         0.0109
            0.0114
                        0.0005
248
                                         0.0108
           0.0112
249
                        0.0005
                                         0.0107
250
           0.0111
                                         0.0106
                        0.0005
251
           0.0110
                        0.0005
                                         0.0105
252
           0.0109
                         0.0005
                                         0.0104
           0.0108
253
                         0.0005
                                         0.0103
                         0.0005
254
            0.0107
                                         0.0102
                        0.0005
255
            0.0106
                                         0.0101
256
           0.0105
                        0.0005
                                         0.0100
257
           0.0104
                        0.0005
                                         0.0099
258
           0.0103
                        0.0005
                                         0.0098
                        0.0005
                                         0.0097
259
           0.0102
           0.0101
                        0.0005
                                         0.0096
260
           0.0100
                        0.0005
261
                                         0.0095
                        0.0005
           0.0099
262
                                         0.0094
           0.0098
                        0.0005
263
                                         0.0094
           0.0097
                        0.0004
264
                                         0.0093
265
           0.0096
                        0.0004
                                         0.0092
266
           0.0096
                         0.0004
                                         0.0091
           0.0095
267
                         0.0004
                                         0.0091
            0.0094
                         0.0004
268
                                         0.0090
                                         0.0089
269
           0.0093
                        0.0004
                        0.0004
270
           0.0093
                                         0.0088
           0.0092
                        0.0004
271
                                         0.0088
272
           0.0091
                        0.0004
                                         0.0087
273
           0.0090
                        0.0004
                                         0.0086
                        0.0004
           0.0090
274
                                         0.0086
                        0.0004
0.0004
0.0004
275
            0.0089
                                         0.0085
           0.0088
276
                                         0.0085
277
           0.0088
                                         0.0084
278
           0.0087
                        0.0004
                                         0.0083
279
           0.0087
                        0.0004
                                         0.0083
280
           0.0086
                         0.0004
                                         0.0082
          0.0085
0.0085
0.0084
                         0.0004
281
                                         0.0082
282
                        0.0004
                                         0.0081
283
                        0.0004
                                         0.0081
284
           0.0084
                        0.0004
                                         0.0080
285
           0.0083
                        0.0004
                                         0.0079
286
           0.0083
                        0.0004
                                         0.0079
287
            0.0082
                         0.0004
                                         0.0078
                         0.0004
288
            0.0082
                                         0.0078
```

TOTAL STORM RAINFALL(INCHES) = 5.99 TOTAL SOIL-LOSS(INCHES) = 1.48

TOTAL EFFECTIVE RAINFALL(INCHES) = 4.51

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 48.9587

2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)
(Note: Time indicated is at END of Each Unit Intervals)

(N	ote: Time ind	dicated is a	t END of Each	Unit Int	ervals)	
TIME(HRS)	VOLUME(AF)	Q(CFS) 0.	650.0	1300.0	1950.0	2600.0
0.083	0.0000	0.00 Q				
0.167	0.0000	0.00 Q	•	•		•
0.250	0.0000	0.00 Q	•	•	•	
0.333	0.0000	0.00 Q	•	•	•	
0.417	0.0000	0.00 Q	•	•	•	•
0.500	0.0000	0.00 Q	•	•	•	•
0.583	0.0000	0.00 Q	•	•	•	•
0.667	0.0000	0.00 Q	•	•	•	•
0.750	0.0000	0.00 Q	•	•	•	•
0.833	0.0000	0.00 Q	•	•	•	•
0.917	0.0000	0.00 Q	•	•	•	•
1.000	0.0000	0.00 Q	•	•	•	•
1.083	0.0000	0.00 Q	•	•	•	•
1.167	0.0000	0.00 Q	•	•	•	•
1.250	0.0000	0.00 Q	•	•	•	•
1.333	0.0000	0.00 Q	•	•	•	•
1.417	0.0000	0.00 Q	•	•	•	•
1.500	0.0000	0.00 Q	•	•	•	•
1.583	0.0000	0.00 Q	•	•	•	•
1.667	0.0000	0.00 Q	•	•	•	•
1.750	0.0000	0.00 Q	•	•	•	•
1.833	0.0000	0.00 Q	•	•	•	•
1.917	0.0000	0.00 Q	•	•	•	•
2.000	0.0000	0.00 Q	•	•	•	•
2.083 2.167	0.0000 0.0000	0.00 Q 0.00 Q	•	•	•	•
2.250	0.0000	0.00 Q 0.00 Q	•	•	•	•
2.333	0.0000	0.00 Q	•	•	•	•
2.417	0.0000	0.00 Q	•	•	•	•
2.500	0.0000	0.00 Q	•	•	•	•
2.583	0.0000	0.00 Q	•	•	•	•
2.667	0.0000	0.00 Q	•	•	•	•
2.750	0.0000	0.00 Q	•	•	•	•
2.833	0.0000	0.00 Q	•	•		•
2.917	0.0001	0.01 Q			_	
3.000	0.0019	0.26 Q			_	
3.083	0.0068	0.72 Q				
3.167	0.0154	1.24 Q	•	•		
3.250	0.0275	1.77 Q		•		
3.333	0.0433	2.29 Q		•		
3.417	0.0628	2.82 Q		•		
3.500	0.0858	3.34 Q		•		
3.583	0.1124	3.87 Q				
3.667	0.1426	4.38 Q		•	•	
3.750	0.1764	4.90 Q			•	
3.833	0.2136	5.41 Q			•	
3.917	0.2544	5.92 Q			•	•
4.000	0.2986	6.42 Q			•	
4.083	0.3464	6.93 Q			•	•

4.167	0.3976	7.43	Q	_	_	_	_
				•	·	•	-
4.250	0.4522	7.94	Q	•	•	•	•
4.333	0.5103	8.43	Q	•	•	•	
4.417	0.5718	8.93	Q				
				•	•	•	•
4.500	0.6368	9.42	Q	•	•	•	•
4.583	0.7051	9.92	Q	•			
4.667	0.7768	10.41	Q				
				•	•	•	•
4.750	0.8519	10.91	Q	•	•	•	
4.833	0.9304	11.39	Q			_	
4.917				•	•	•	-
	1.0122	11.89	Q	•	•	•	•
5.000	1.0974	12.37	Q	•	•	•	
5.083	1.1860	12.86	Q				
				•	•	•	•
5.167	1.2778	13.34	Q	•	•	•	•
5.250	1.3731	13.83	Q	•	•	•	
5.333	1.4716	14.30	Q				
				•	•	•	•
5.417	1.5735	14.80	Q	•	•	•	•
5.500	1.6787	15.27	Q	•		•	
5.583	1.7873	15.77	Q				
				•	•	•	•
5.667	1.8991	16.24	Q	•	•	•	
5.750	2.0143	16.73	Q	_		_	
	2.1328			•	•	•	-
5.833		17.20	Q	•	•	•	•
5.917	2.2547	17.70	Q	•	•		
6.000	2.3798	18.16	Q				
				•	•	•	•
6.083	2.5083	18.66	Q	•	•	•	•
6.167	2.6400	19.13	Q			•	
6.250	2.7752	19.63	Q				
				•	•	•	•
6.333	2.9137	20.10	Q	•	•	•	•
6.417	3.0555	20.60	Q			•	
6.500	3.2006	21.07	Q				
				•	•	•	•
6.583	3.3492	21.57	Q	•	•	•	•
6.667	3.5010	22.04	Q	•			
6.750	3.6564	22.55					
			Q	•	•	•	•
6.833	3.8149	23.02	QV	•	•		
6.917	3.9770	23.54	QV			_	_
7.000				•	•	•	
	4.1424	24.01	QV	•	•	•	•
7.083	4.3113	24.53	QV	•		•	
7.167	4.4836	25.00	QV				
				•	•	•	•
7.250	4.6594	25.53	QV	•	•	•	•
7.333	4.8385	26.01	QV	•	•	•	
7.417	5.0212	26.53	QV				
				•	•	•	•
7.500	5.2073	27.02	QV	•	•	•	•
7.583	5.3970	27.55	QV	•	•	•	
7.667	5.5902	28.04	QV				
				•	•	•	•
7.750	5.7870	28.58	QV	•	•	•	•
7.833	5.9872	29.07	QV			•	
7.917	6.1912	29.62	QV				
				•	•	•	•
8.000	6.3987	30.12	QV	•	•	•	•
8.083	6.6099	30.68	QV	•			
8.167	6.8247	31.18	QV				
			· -	•	•	•	•
8.250	7.0433	31.75	QV	•	•	•	
8.333	7.2655	32.26	QV				
8.417	7.4916	32.84	QV	•	•	•	•
8.500	7.7213	33.35	Q V	•	•		
8.583	7.9551	33.94	Q V			•	
	8.1924			•	-	-	-
8.667		34.47	Q V	•	•	•	•
8.750	8.4340	35.07	Q V			•	
8.833	8.6791	35.60	Q V			•	
				*	*	-	-
8.917	8.9286	36.22	Q V	•	•	•	•
9.000	9.1817	36.76	Q V				
9.083	9.4392	37.39	Q V		_		
			~	•			-

9.167	9.7005	37.94	Q V	•		•	•	
9.250	9.9663	38.59	Q V					
9.333	10.2359	39.15	Q V		•	•	•	•
					•	•	•	•
9.417	10.5101	39.81	Q V		•	•	•	•
9.500	10.7883	40.39	Q V	•	•	•	•	
9.583	11.0711	41.07	Q V	•		•	•	
9.667	11.3580	41.66		V				
9.750	11.6498	42.36			•	•	•	•
			~	V	•	•	•	•
9.833	11.9457	42.97	Q	V	•	•	•	•
9.917	12.2467	43.69	Q	V				
10.000	12.5518	44.31	Q	V				
10.083	12.8622	45.06		V				
10.167	13.1769	45.70			•	•	•	•
				V	•	•	•	•
10.250	13.4969	46.47		V	•	•	•	•
10.333	13.8215	47.13	Q	V				
10.417	14.1516	47.93	Q	V				
10.500	14.4864	48.61		V				
		49.44			•	•	•	•
10.583	14.8269			V	•	•	•	•
10.667	15.1723	50.14	Q	V	•	•	•	•
10.750	15.5235	51.01	Q	V				
10.833	15.8799	51.74	Q	V				
10.917	16.2424	52.64	Q	V				
					•	•	•	•
11.000	16.6101	53.39	Q	V	•	•	•	•
11.083	16.9843	54.33	Q	V	•	•	•	•
11.167	17.3639	55.12	Q	V		•	•	
11.250	17.7502	56.10	Q	V				
11.333	18.1423	56.92	Q	V				
11.417	18.5414	57.95		V	•	•	•	•
			Q		•	•	•	•
11.500	18.9464	58.81	Q	V	•	•	•	•
11.583	19.3589	59.89	Q	V	•	•	•	•
11.667	19.7776	60.79	Q	V		•	•	
11.750	20.2041	61.93	Q	V				
11.833	20.6371	62.88			•	•	•	•
			Q	V	•	•	•	•
11.917	21.0785	64.08	Q	V	•	•	•	•
12.000	21.5267	65.08	.Q	V	•	•	•	•
12.083	21.8396	45.43	Q	V		•	•	
12.167	22.2221	55.54	Q	V				
12.250	22.6461	61.56	Q	V				
					•	•	•	•
12.333	23.0849	63.71	Q	V	•	•	•	•
12.417	23.5348	65.32	.Q	V	•	•	•	•
12.500	23.9928	66.51	.Q	V		•	•	
12.583	24.4609	67.97	.Q	V				
12.667	24.9371	69.15	.Q	V				
					•	•	•	•
12.750	25.4242	70.73	· Q	V	•	•	•	•
12.833	25.9201	72.00	.Q	V	•	•	•	•
12.917	26.4277	73.70	.Q	V				
13.000	26.9448	75.08	.Q	V		_	_	
13.083	27.4746	76.93	.Q	V	·	•	•	•
					•	•	•	•
13.167	28.0148	78.43	.Q	V	•	•	•	•
13.250	28.5689	80.46	.Q	V	•	•	•	•
13.333	29.1342	82.09	.Q	V		•	•	
13.417	29.7149	84.32	. Q	V		_	_	
13.500	30.3080	86.11	.Q	V	-	-	-	•
						•	•	•
13.583	30.9180	88.58	.Q	V		•	•	•
13.667	31.5417	90.56	.Q	V		•	•	•
13.750	32.1844	93.31	.Q	V				
13.833	32.8422	95.52	.Q	V				
13.917	33.5214	98.62	.Q	V			•	-
14.000		101.10				•	•	•
	34.2177		. Q		<i>y</i> .	•	•	•
14.083	34.9399	104.86	.Q	7	J.	•	•	•

14.167	35.6821	107.77	. Q	V.			
14.250	36.4522	111.81	. Q . Q	v. V.	•	•	•
14.333	37.2446	115.06	.Q	٧.		•	
14.417	38.0692	119.73	.Q	V	•	•	
14.500	38.9198	123.51	.Q	V			
14.583	39.8085	129.04	. Q	V			
14.667	40.7281	133.52	. Q	V			
14.750	41.6935	140.18	. Q	.V	•		
14.833	42.6963	145.61	. Q	.V			
14.917	43.7557	153.83	. Q	.V			
15.000	44.8617	160.60	. Q	.V	•		•
15.083	46.0400	171.08	. Q	. V	•		•
15.167	47.2783	179.81	. Q	. V	•	•	•
15.250	48.6127	193.76	. Q	. V	•	•	•
15.333	50.0286	205.59	. Q	. V	-	•	•
15.417	51.5986	227.97	. Q	. V	•	•	•
15.500	53.2932	246.05	. Q	. V	•	•	•
15.583	55.1984	276.63	. Q	. V		•	•
15.667	57.2954	304.48	. Q	. \		•	•
15.750	59.7644	358.50	. Q	. 7		•	•
15.833	62.6242	415.26	. Q		V .	•	•
15.917	66.5817	574.62	•	Q .	V .	•	•
16.000 16.083	72.2036 89.6922	816.29	•	. Q	V. . V	•	•
16.167	98.6328	2539.35 1298.17	•	•		V .	Q.
16.250	102.7895	603.56	•	Q.	Q.	v . V .	•
16.333	105.3442	370.94	. Q	Q.	•	v . V .	•
16.417	107.2469	276.27	. Q	•	•	v . V .	•
16.500	108.8092	226.84	. Q	•	•	v . V .	•
16.583	110.1819	199.33	. Q	•	•	V.	•
16.667	111.4171	179.35	. Q			V.	
16.750	112.5463	163.95	. Q			٧.	
16.833	113.5904	151.61	. Q			V	
16.917	114.5645	141.44	. Q	•		V	
17.000	115.4796	132.88	. Q	•		V	
17.083	116.3423	125.27	.Q			V	
17.167	117.1604	118.79	.Q			.V	
17.250	117.9398	113.16	. Q	•	•	.V	•
17.333	118.6850	108.20	.Q	•	•	.V	•
17.417	119.3996	103.76	. Q	•	•	.V	•
17.500	120.0867	99.77	. Q	•	•	.V	•
17.583	120.7489	96.15	. Q	•	-	. V	•
17.667	121.3884	92.86	. Q	•	•	. V	•
17.750	122.0071	89.84	. Q	•	•	. V	•
17.833	122.6067	87.06	. Q	•	•	. V	•
17.917	123.1887	84.50	. Q	•	•	. V	•
18.000	123.7543 124.3373	82.13	. Q	•	•	. V	•
18.083 18.167	124.3373	84.65 84.36	. Q	•	•	. V	•
18.250	124.9183	82.79	. Q	•	•	. V . V	•
18.333	126.0463	81.00	. Q . Q	•	•	. v	•
18.417	126.5921	79.25		•	•	. v	•
18.500	127.1264	77.58	. Q . Q	•	•	. v	•
18.583	127.1204	76.00	. Q . Q	•	•	. v	•
18.667	128.1628	74.50	. Q . Q	•	•	. v	•
18.750	128.6661	73.07	. Q	•	•	. v	•
18.833	129.1600	71.72	.Q			. V	
18.917	129.6452	70.44	.Q		•	. V	•
19.000	130.1218	69.21	.Q	•		. V	
19.083	130.5904	68.04	. Q			. V	

19.167	131.0513	66.92	.Q		•	•	•	V .
19.250	131.5047	65.84	.Q		•	•		V .
19.333	131.9511	64.82	Q			•		V .
19.417	132.3908	63.83	Q					V .
19.500	132.8239	62.88	Q					V .
19.583	133.2507	61.97	Q		•	•		V .
19.667	133.6715	61.10	Q					V .
19.750	134.0864	60.26	Q					v .
19.833	134.4958	59.44	Q	_		_		v .
19.917	134.8998	58.66	Q					٧.
20.000	135.2986	57.90	Q	•	•	•	•	v .
20.083	135.6923	57.17	Q	•	•	•	•	v .
20.167	136.0811	56.46	Q	•		•	•	v .
20.250	136.4653	55.78	Q	•	•	•	•	v . V .
20.230	136.8448	55.70		•	•	•	•	v . V .
			Q	•		•	•	
20.417	137.2200	54.47	Q	•	•	•	•	V .
20.500	137.5908	53.85	Q	•	•	•	•	V .
20.583	137.9575	53.25	Q	•	•	•	•	V .
20.667	138.3202	52.66	Q	•	•	•	•	V .
20.750	138.6789	52.09	Q	•	•	•	•	V .
20.833	139.0339	51.54	Q		•	•		V .
20.917	139.3851	51.00	Q	•	•	•		V .
21.000	139.7327	50.48	Q			•		V .
21.083	140.0769	49.97	Q					V .
21.167	140.4176	49.47	Q		•	•		V .
21.250	140.7550	48.99	Q			•		V .
21.333	141.0891	48.52	Q			•		V .
21.417	141.4201	48.06	Q					v .
21.500	141.7480	47.61	Q					v .
21.583	142.0730	47.18	Q					v .
21.667	142.3949	46.75	Q	_				v .
21.750	142.7141	46.34	Q	•	•	•	•	v .
21.833	143.0304	45.93	Q	•	•	•	•	v .
21.917	143.3440	45.54	Q	•	•	•	•	v .
22.000	143.6550	45.15	Q	•	•	•	•	v . V .
22.083	143.9633	44.77	Q	•	•	•	•	v . V .
22.167	144.2691	44.40	Q	•	•	•	•	v . V .
22.250	144.5724	44.04		•	•	•	•	
			Q	•		•	•	V .
22.333	144.8733	43.68	Q	•	•	•	•	V .
22.417	145.1718	43.34	Q	•	•	•	•	V .
22.500	145.4679	43.00	Q	•	•	•	•	V .
22.583	145.7617	42.67	Q	•	•	•	•	V .
22.667	146.0533	42.34	Q	•	•	•	•	V .
22.750	146.3427	42.02	Q	•		•	•	V .
22.833	146.6300	41.71	Q		•	•		V .
22.917	146.9151	41.40	Q	•	•	•		V.
23.000	147.1982	41.10	Q					V.
23.083	147.4793	40.81	Q			•		V.
23.167	147.7583	40.52	Q		•	•		V.
23.250	148.0354	40.23	Q			•		V.
23.333	148.3106	39.96	Q					V.
23.417	148.5839	39.68	Q					V.
23.500	148.8553	39.41	Q					V.
23.583	149.1250	39.15	Q			•		v.
23.667	149.3928	38.89	Q	•				v.
23.750	149.6589	38.64	Q	•		-	-	v. V.
23.730	149.9233	38.39	Q	•	•	•	•	v. V.
23.833	150.1860	38.14	Q	•	•	•	•	v. V.
24.000	150.1800	37.90	Q	•	•	•	•	v. V.
24.000	150.5340	12.62	Q	•	•	•	•	v. V.
21.005	100.0010	12.02	×	•	•	•	•	٧.

24.167	150.5539	2.90	Q	•		•	V.
24.250	150.5583	0.63	Q			•	V.
24.333	150.5591	0.12	Q			•	V.
24.417	150.5591	0.00	Q			•	V.
========	========	======	=====	========	=======	========	=======

END OF FLOODSCx ROUTING ANALYSIS

APPENDIX

HYDROLOGY MAPS

ADDENDUM

ALTERNATIVE TO DETENTION BASINS

The developer has proposed a few alternative measures to augment or enhance the storm water runoff volume attenuation methods. In recent years, new technologies have become available to better retain and store excess runoff volume such as rain barrels, bio-retention (see page 166 – Typical Residential Lot Rain Water Capturing Schematic) and permeable pavers (see page 165 – Typical Permeable Paver Section). These rain capturing measures will not only reduce the project's hydrologic and subsequent development footprint but also reduce the water demand of the project since the captured runoff will be used for irrigation.

ASSUMPTIONS:

Bio-retention:

- Average lot size = 4500 sf
- Average impervious coverage per lot = 1500 sf roof + 300 sf walkways and driveway = 1800 sf
- -Typical pervious coverage (bio-retention) per lot = 1000 sf with the top 12" layer providing a minimum of 5"/hour infiltration rate.
- -Typical void ratio of engineered infiltration material = 0.55

Rain barrels:

- -Typical home rain gutter down spout location = 4
- -Typical rain barrel capacity = 50 gal.

Permeable pavers:

- Average permeable paver section: 2" bedding+4" no. 57 stone base + 24" no.2 stone subbase
- Average permeable paver base void ratio = 0.4
- -Typical storage volume under each squire foot of pavers = 1.0 cf

Project design:

- Proposed residential units = 352 (Phase 1 only)

ANALYSIS:

Typical Lot rainwater capturing/retention calculations:

Bio-retention volume per typical home: $1000 \text{ sf x } 12^{\circ}/12 \text{ x } 0.55 \text{ void ratio} = 550 \text{ cf.}$

Total bio-retention vol. = 550 cf x 352 SFR homes = 193600 cf = 4.4 Ac-Ft.

Rain barrel capacity = 4×50 gal = 200 gal = 27 cf

Total rain barrel capturing capacity = 27 cf x 352 SFR homes = 9500 cf = 0.2 Ac-Ft.

Total lot rain capturing capacity for the development = 4.4 + 0.2 = 4.6 Ac-Ft.

Permeable Pavers:

The developer proposes to install a total of 23 acres of permeable pavers throughout the entire project, only a portion of the 23 acres of pavers will be deployed for this Implementing tentative map, the rest will be installed in later phases throughout the project.

The project will need to install a minimum of **4.8** acres of permeable pavers, in additions to the rain barrels on each lot, to achieve the 9.4 Ac-Ft of total storage space. The combined capacity will eliminate the required detention basin for 100-year runoff attenuation purposes.

Total alternative storage capacity = rain barrels + bio-retention + permeable pavers = 4.6 + 4.8 = 9.4 Ac-

CONCLUSION:

These permeable pavers, bio-retention and rain barrels offer a great alternative to the proposed detention basins for 100-year runoff volume attenuation.

The project developers projected a total of 23 acres of pavers throughout the project. Per the calculations presented in this report, the proposed rain barrels, bio-retention areas and permeable pavers will provide adequate storage capacity to eliminate the required detention basin for 100-year storm water runoff volume attenuation purposes. It is possible to eliminate the proposed large detention basins and reduce the project foot print with the deployment of these alternative methods. Additionally, the captured rainwater in the bio-retention areas and rain barrels will offset the irrigation water demand of the project to make it a more sustainable development.

LILAC HILLS RANCH TYPICAL RESIDENTIAL LOT RAIN WATER CAPTURING SCHEMATIC

FRONTAGE STREET

PERMEABLE PAVERS ANALYSIS

